These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
202 related articles for article (PubMed ID: 35977402)
1. Enhanced Performance of Monolithic Chalcogenide Thermoelectric Modules for Energy Harvesting via Co-optimization of Experiment and Simulation. Lai H; Singh S; Peng Y; Hirata K; Ryu M; Ang AKR; Miao L; Takeuchi T ACS Appl Mater Interfaces; 2022 Aug; 14(34):38642-38650. PubMed ID: 35977402 [TBL] [Abstract][Full Text] [Related]
2. Development of Cu Ang AKR; Yamazaki I; Hirata K; Singh S; Matsunami M; Takeuchi T ACS Appl Mater Interfaces; 2023 Oct; 15(40):46962-46970. PubMed ID: 37768216 [TBL] [Abstract][Full Text] [Related]
3. High-performance dispenser printed MA p-type Bi(0.5)Sb(1.5)Te(3) flexible thermoelectric generators for powering wireless sensor networks. Madan D; Wang Z; Chen A; Wright PK; Evans JW ACS Appl Mater Interfaces; 2013 Nov; 5(22):11872-6. PubMed ID: 24160841 [TBL] [Abstract][Full Text] [Related]
4. High-Performance Ag-Modified Bi Shang H; Li T; Luo D; Yu L; Zou Q; Huang D; Xiao L; Gu H; Ren Z; Ding F ACS Appl Mater Interfaces; 2020 Feb; 12(6):7358-7365. PubMed ID: 31967776 [TBL] [Abstract][Full Text] [Related]
5. Enhanced Thermoelectric Performances of CNTs-Reinforced Cement Composites with Bi Zhou H; Liu H; Qian G; Xu P; Yu H; Cai J; Zheng J Nanomaterials (Basel); 2022 Nov; 12(21):. PubMed ID: 36364660 [TBL] [Abstract][Full Text] [Related]
6. High-Performance W-Doped Bi Liu Z; Zhang Y; Xue FN; Liu T; Ding X; Lu Y; Zhang JC; Xu FJ ACS Appl Mater Interfaces; 2024 May; 16(20):26025-26033. PubMed ID: 38717862 [TBL] [Abstract][Full Text] [Related]
7. Finite Element Analysis and Design of a Flexible Thermoelectric Generator with a Rhombus Gap Structure. Li C; Jin J; Cao W; Sun X; Ding Q; Hou Y; Wang Z ACS Appl Mater Interfaces; 2024 Apr; ():. PubMed ID: 38669057 [TBL] [Abstract][Full Text] [Related]
8. High-Performance Paper-Based Thermoelectric Generator from Cu Das S; Mondal BP; Ranjan P; Datta A ACS Appl Mater Interfaces; 2023 Dec; 15(48):56022-56033. PubMed ID: 38010192 [TBL] [Abstract][Full Text] [Related]
9. Flexible thermoelectric generators with inkjet-printed bismuth telluride nanowires and liquid metal contacts. Chen B; Kruse M; Xu B; Tutika R; Zheng W; Bartlett MD; Wu Y; Claussen JC Nanoscale; 2019 Mar; 11(12):5222-5230. PubMed ID: 30644953 [TBL] [Abstract][Full Text] [Related]
10. High Power Density Body Heat Energy Harvesting. Nozariasbmarz A; Kishore RA; Poudel B; Saparamadu U; Li W; Cruz R; Priya S ACS Appl Mater Interfaces; 2019 Oct; 11(43):40107-40113. PubMed ID: 31577411 [TBL] [Abstract][Full Text] [Related]
11. High Performance Thermoelectric Power of Bi Pang K; Yuan M; Zhang Q; Li Y; Zhang Y; Zhou W; Wu G; Tan X; Noudem JG; Cui C; Hu H; Wu J; Sun P; Liu GQ; Jiang J Small; 2024 Mar; 20(12):e2306701. PubMed ID: 37948419 [TBL] [Abstract][Full Text] [Related]
12. Thermoelectric Performance Enhancement in Commercial Bi Li S; Zhao W; Cheng Y; Chen L; Xu M; Guo K; Pan F ACS Appl Mater Interfaces; 2023 Jan; 15(1):1167-1174. PubMed ID: 36546598 [TBL] [Abstract][Full Text] [Related]
13. Realizing High Thermoelectric Performance of Bi-Sb-Te-Based Printed Films through Grain Interface Modification by an In Situ-Grown β-Cu Mallick MM; Franke L; Rösch AG; Ahmad S; Geßwein H; Eggeler YM; Rohde M; Lemmer U ACS Appl Mater Interfaces; 2021 Dec; 13(51):61386-61395. PubMed ID: 34910878 [TBL] [Abstract][Full Text] [Related]
14. Enhanced Thermoelectric Properties of p-Type Bi Tong Y; Huang W; Tan X; Yi L; Zhuang S; Wu J; Song K; Liu G; Zhang G; Jiang J ACS Appl Mater Interfaces; 2022 Dec; 14(50):55780-55786. PubMed ID: 36475592 [TBL] [Abstract][Full Text] [Related]
15. Stretchable Nanolayered Thermoelectric Energy Harvester on Complex and Dynamic Surfaces. Yang Y; Hu H; Chen Z; Wang Z; Jiang L; Lu G; Li X; Chen R; Jin J; Kang H; Chen H; Lin S; Xiao S; Zhao H; Xiong R; Shi J; Zhou Q; Xu S; Chen Y Nano Lett; 2020 Jun; 20(6):4445-4453. PubMed ID: 32368921 [TBL] [Abstract][Full Text] [Related]
16. High Figure-of-Merit Telluride-Based Flexible Thermoelectric Films through Interfacial Modification via Millisecond Photonic-Curing for Fully Printed Thermoelectric Generators. Mallick MM; Franke L; Rösch AG; Geßwein H; Long Z; Eggeler YM; Lemmer U Adv Sci (Weinh); 2022 Nov; 9(31):e2202411. PubMed ID: 36106362 [TBL] [Abstract][Full Text] [Related]
17. Enhancement of ZT in Bi Tsai WH; Chen CL; Vankayala RK; Lo YH; Hsieh WP; Wang TH; Huang SY; Chen YY Nanomaterials (Basel); 2024 Apr; 14(9):. PubMed ID: 38727342 [TBL] [Abstract][Full Text] [Related]
18. Enhancing Thermoelectric and Cooling Performance of Bi Li C; Li W; Sun C; Ma Z; Wei Y; Ma W; Yang B; Li X; Luo Y; Yang J ACS Appl Mater Interfaces; 2024 Aug; 16(34):45224-45233. PubMed ID: 39149867 [TBL] [Abstract][Full Text] [Related]
19. Development of MEMS Process Compatible (Bi,Sb) Bhatnagar P; Vashaee D Micromachines (Basel); 2022 Sep; 13(9):. PubMed ID: 36144082 [TBL] [Abstract][Full Text] [Related]
20. Synergistic Optimization of the Thermoelectric and Mechanical Properties of Large-Size Homogeneous Bi Lee CH; Dharmaiah P; Kim DH; Yoon DK; Kim TH; Song SH; Hong SJ ACS Appl Mater Interfaces; 2022 Mar; 14(8):10394-10406. PubMed ID: 35188737 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]