These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 35977439)

  • 1. Biogenesis of post-translationally modified peptide signals for plant reproductive development.
    Stintzi A; Schaller A
    Curr Opin Plant Biol; 2022 Oct; 69():102274. PubMed ID: 35977439
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Precursor processing for plant peptide hormone maturation by subtilisin-like serine proteinases.
    Schardon K; Hohl M; Graff L; Pfannstiel J; Schulze W; Stintzi A; Schaller A
    Science; 2016 Dec; 354(6319):1594-1597. PubMed ID: 27940581
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Phytosulfokine peptide signaling controls pollen tube growth and funicular pollen tube guidance in Arabidopsis thaliana.
    Stührwohldt N; Dahlke RI; Kutschmar A; Peng X; Sun MX; Sauter M
    Physiol Plant; 2015 Apr; 153(4):643-53. PubMed ID: 25174442
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Peptide signaling for drought-induced tomato flower drop.
    Reichardt S; Piepho HP; Stintzi A; Schaller A
    Science; 2020 Mar; 367(6485):1482-1485. PubMed ID: 32217727
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Regulation of plant peptide hormones and growth factors by post-translational modification.
    Stührwohldt N; Schaller A
    Plant Biol (Stuttg); 2019 Jan; 21 Suppl 1():49-63. PubMed ID: 30047205
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Sulfated plant peptide hormones.
    Kaufmann C; Sauter M
    J Exp Bot; 2019 Aug; 70(16):4267-4277. PubMed ID: 31231771
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Phytosulfokine (PSK) precursor processing by subtilase SBT3.8 and PSK signaling improve drought stress tolerance in Arabidopsis.
    Stührwohldt N; Bühler E; Sauter M; Schaller A
    J Exp Bot; 2021 Apr; 72(9):3427-3440. PubMed ID: 33471900
    [TBL] [Abstract][Full Text] [Related]  

  • 8. CASPARIAN STRIP INTEGRITY FACTOR (CIF) family peptides - regulator of plant extracellular barriers.
    Fujita S
    Peptides; 2021 Sep; 143():170599. PubMed ID: 34174383
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Analysis of Peptide Hormone Maturation and Processing Specificity Using Isotope-Labeled Peptides.
    Brück S; Pfannstiel J; Ingram G; Stintzi A; Schaller A
    Methods Mol Biol; 2023; 2581():323-335. PubMed ID: 36413328
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Processing of a plant peptide hormone precursor facilitated by posttranslational tyrosine sulfation.
    Royek S; Bayer M; Pfannstiel J; Pleiss J; Ingram G; Stintzi A; Schaller A
    Proc Natl Acad Sci U S A; 2022 Apr; 119(16):e2201195119. PubMed ID: 35412898
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Phytosulfokine peptides, their receptors, and functions.
    Li Y; Di Q; Luo L; Yu L
    Front Plant Sci; 2023; 14():1326964. PubMed ID: 38250441
    [TBL] [Abstract][Full Text] [Related]  

  • 12. IDA (INFLORESCENCE DEFICIENT IN ABSCISSION)-like peptides and HAE (HAESA)-like receptors regulate corolla abscission in Nicotiana benthamiana flowers.
    Ventimilla D; Velázquez K; Ruiz-Ruiz S; Terol J; Pérez-Amador MA; Vives MC; Guerri J; Talon M; Tadeo FR
    BMC Plant Biol; 2021 May; 21(1):226. PubMed ID: 34020584
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The biogenesis of CLEL peptides involves several processing events in consecutive compartments of the secretory pathway.
    Stührwohldt N; Scholl S; Lang L; Katzenberger J; Schumacher K; Schaller A
    Elife; 2020 Apr; 9():. PubMed ID: 32297855
    [TBL] [Abstract][Full Text] [Related]  

  • 14. From structure to function - a family portrait of plant subtilases.
    Schaller A; Stintzi A; Rivas S; Serrano I; Chichkova NV; Vartapetian AB; Martínez D; Guiamét JJ; Sueldo DJ; van der Hoorn RAL; Ramírez V; Vera P
    New Phytol; 2018 May; 218(3):901-915. PubMed ID: 28467631
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Brt9SIDA/IDALs as peptide signals mediate diverse biological pathways in plants.
    Wang P; Wu T; Jiang C; Huang B; Li Z
    Plant Sci; 2023 May; 330():111642. PubMed ID: 36804389
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Phytosulfokine peptide signalling.
    Sauter M
    J Exp Bot; 2015 Aug; 66(17):5161-9. PubMed ID: 25754406
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Existence of a plant tyrosylprotein sulfotransferase: novel plant enzyme catalyzing tyrosine O-sulfation of preprophytosulfokine variants in vitro.
    Hanai H; Nakayama D; Yang H; Matsubayashi Y; Hirota Y; Sakagami Y
    FEBS Lett; 2000 Mar; 470(2):97-101. PubMed ID: 10734215
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Exploring peptide hormones in plants: identification of four peptide hormone-receptor pairs and two post-translational modification enzymes.
    Matsubayashi Y
    Proc Jpn Acad Ser B Phys Biol Sci; 2018; 94(2):59-74. PubMed ID: 29434080
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Tyrosylprotein sulfotransferase-dependent and -independent regulation of root development and signaling by PSK LRR receptor kinases in Arabidopsis.
    Kaufmann C; Stührwohldt N; Sauter M
    J Exp Bot; 2021 Jul; 72(15):5508-5521. PubMed ID: 34028532
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Characterization of Phytaspase Proteolytic Activity Using Fluorogenic Peptide Substrates.
    Galiullina RA; Chichkova NV; Safronov GG; Vartapetian AB
    Methods Mol Biol; 2024; 2731():49-58. PubMed ID: 38019425
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.