These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

237 related articles for article (PubMed ID: 35977825)

  • 41. Small G protein RAC-2 regulates forgetting via the JNK-1 signalling pathway in Caenorhabditis elegans.
    Bai H; Huang H; Zhao N; Gu H; Li Y; Zou W; Wu T; Huang X
    Eur J Neurosci; 2022 Dec; 56(12):6162-6173. PubMed ID: 36321581
    [TBL] [Abstract][Full Text] [Related]  

  • 42. A diacetyl-induced quiescence in young Caenorhabditis elegans.
    Hoffmann MC; Sellings LH; van der Kooy D
    Behav Brain Res; 2010 Dec; 214(1):12-7. PubMed ID: 20493908
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Toxic stress-specific cytoprotective responses regulate learned behavioral decisions in C. elegans.
    Hajdú G; Gecse E; Taisz I; Móra I; Sőti C
    BMC Biol; 2021 Feb; 19(1):26. PubMed ID: 33563272
    [TBL] [Abstract][Full Text] [Related]  

  • 44. The cyclic nucleotide gated channel subunit CNG-1 instructs behavioral outputs in Caenorhabditis elegans by coincidence detection of nutritional status and olfactory input.
    He C; Altshuler-Keylin S; Daniel D; L'Etoile ND; O'Halloran D
    Neurosci Lett; 2016 Oct; 632():71-8. PubMed ID: 27561605
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Nuclear PKG localization is regulated by G₀ alpha and is necessary in the AWB neurons to mediate avoidance in Caenorhabditis elegans.
    He C; O'Halloran DM
    Neurosci Lett; 2013 Oct; 553():35-9. PubMed ID: 23954825
    [TBL] [Abstract][Full Text] [Related]  

  • 46. A Single Set of Interneurons Drives Opposite Behaviors in C. elegans.
    Guillermin ML; Carrillo MA; Hallem EA
    Curr Biol; 2017 Sep; 27(17):2630-2639.e6. PubMed ID: 28823678
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Effect of simultaneous presentation of multiple attractants on chemotactic response of the nematode Caenorhabditis elegans.
    Matsuura T; Oikawa T; Wakabayashi T; Shingai R
    Neurosci Res; 2004 Apr; 48(4):419-29. PubMed ID: 15041195
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Nuclear entry of a cGMP-dependent kinase converts transient into long-lasting olfactory adaptation.
    Lee JI; O'Halloran DM; Eastham-Anderson J; Juang BT; Kaye JA; Scott Hamilton O; Lesch B; Goga A; L'Etoile ND
    Proc Natl Acad Sci U S A; 2010 Mar; 107(13):6016-21. PubMed ID: 20220099
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Genetic dissection of memory for associative and non-associative learning in Caenorhabditis elegans.
    Lau HL; Timbers TA; Mahmoud R; Rankin CH
    Genes Brain Behav; 2013 Mar; 12(2):210-23. PubMed ID: 23013276
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Voltage-dependent anion channel (VDAC-1) is required for olfactory sensing in Caenorhabditis elegans.
    Uozumi T; Hamakawa M; Deno YK; Nakajo N; Hirotsu T
    Genes Cells; 2015 Oct; 20(10):802-16. PubMed ID: 26223767
    [TBL] [Abstract][Full Text] [Related]  

  • 51. [Molecular and cell biological mechanism of olfactory adaptation in
    Zhang X; Kang L
    Zhejiang Da Xue Xue Bao Yi Xue Ban; 2018 May; 47(3):307-312. PubMed ID: 30226334
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Dauer Formation in
    Pandey P; Bhat US; Singh A; Joy A; Birari V; Kadam NY; Babu K
    eNeuro; 2021; 8(2):. PubMed ID: 33712439
    [TBL] [Abstract][Full Text] [Related]  

  • 53. A conserved juxtacrine signal regulates synaptic partner recognition in Caenorhabditis elegans.
    Park J; Knezevich PL; Wung W; O'Hanlon SN; Goyal A; Benedetti KL; Barsi-Rhyne BJ; Raman M; Mock N; Bremer M; Vanhoven MK
    Neural Dev; 2011 Jun; 6():28. PubMed ID: 21663630
    [TBL] [Abstract][Full Text] [Related]  

  • 54. C. elegans AWA Olfactory Neurons Fire Calcium-Mediated All-or-None Action Potentials.
    Liu Q; Kidd PB; Dobosiewicz M; Bargmann CI
    Cell; 2018 Sep; 175(1):57-70.e17. PubMed ID: 30220455
    [TBL] [Abstract][Full Text] [Related]  

  • 55. A natural odor attraction between lactic acid bacteria and the nematode Caenorhabditis elegans.
    Choi JI; Yoon KH; Subbammal Kalichamy S; Yoon SS; Il Lee J
    ISME J; 2016 Mar; 10(3):558-67. PubMed ID: 26241504
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Regulation of experience-dependent bidirectional chemotaxis by a neural circuit switch in Caenorhabditis elegans.
    Satoh Y; Sato H; Kunitomo H; Fei X; Hashimoto K; Iino Y
    J Neurosci; 2014 Nov; 34(47):15631-7. PubMed ID: 25411491
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Olfactory plasticity is regulated by pheromonal signaling in Caenorhabditis elegans.
    Yamada K; Hirotsu T; Matsuki M; Butcher RA; Tomioka M; Ishihara T; Clardy J; Kunitomo H; Iino Y
    Science; 2010 Sep; 329(5999):1647-50. PubMed ID: 20929849
    [TBL] [Abstract][Full Text] [Related]  

  • 58. An olfactory-interneuron circuit that drives stress-induced avoidance behavior in C. elegans.
    Chen YJ; Pan CL
    Neurosci Res; 2023 Jun; 191():91-97. PubMed ID: 36565857
    [TBL] [Abstract][Full Text] [Related]  

  • 59. The neural circuits and sensory channels mediating harsh touch sensation in Caenorhabditis elegans.
    Li W; Kang L; Piggott BJ; Feng Z; Xu XZ
    Nat Commun; 2011; 2():315. PubMed ID: 21587232
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Two insulin-like peptides antagonistically regulate aversive olfactory learning in C. elegans.
    Chen Z; Hendricks M; Cornils A; Maier W; Alcedo J; Zhang Y
    Neuron; 2013 Feb; 77(3):572-85. PubMed ID: 23395381
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.