BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

217 related articles for article (PubMed ID: 35977941)

  • 1. Cryo-EM structures of the channelrhodopsin ChRmine in lipid nanodiscs.
    Tucker K; Sridharan S; Adesnik H; Brohawn SG
    Nat Commun; 2022 Aug; 13(1):4842. PubMed ID: 35977941
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Structural basis for channel conduction in the pump-like channelrhodopsin ChRmine.
    Kishi KE; Kim YS; Fukuda M; Inoue M; Kusakizako T; Wang PY; Ramakrishnan C; Byrne EFX; Thadhani E; Paggi JM; Matsui TE; Yamashita K; Nagata T; Konno M; Quirin S; Lo M; Benster T; Uemura T; Liu K; Shibata M; Nomura N; Iwata S; Nureki O; Dror RO; Inoue K; Deisseroth K; Kato HE
    Cell; 2022 Feb; 185(4):672-689.e23. PubMed ID: 35114111
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Conductance Mechanisms of Rapidly Desensitizing Cation Channelrhodopsins from Cryptophyte Algae.
    Sineshchekov OA; Govorunova EG; Li H; Wang Y; Melkonian M; Wong GK; Brown LS; Spudich JL
    mBio; 2020 Apr; 11(2):. PubMed ID: 32317325
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Structural basis for ion selectivity in potassium-selective channelrhodopsins.
    Tajima S; Kim YS; Fukuda M; Jo Y; Wang PY; Paggi JM; Inoue M; Byrne EFX; Kishi KE; Nakamura S; Ramakrishnan C; Takaramoto S; Nagata T; Konno M; Sugiura M; Katayama K; Matsui TE; Yamashita K; Kim S; Ikeda H; Kim J; Kandori H; Dror RO; Inoue K; Deisseroth K; Kato HE
    Cell; 2023 Sep; 186(20):4325-4344.e26. PubMed ID: 37652010
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Structural foundations of optogenetics: Determinants of channelrhodopsin ion selectivity.
    Berndt A; Lee SY; Wietek J; Ramakrishnan C; Steinberg EE; Rashid AJ; Kim H; Park S; Santoro A; Frankland PW; Iyer SM; Pak S; Ährlund-Richter S; Delp SL; Malenka RC; Josselyn SA; Carlén M; Hegemann P; Deisseroth K
    Proc Natl Acad Sci U S A; 2016 Jan; 113(4):822-9. PubMed ID: 26699459
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Structure-Function Relationship of Channelrhodopsins.
    Kato HE
    Adv Exp Med Biol; 2021; 1293():35-53. PubMed ID: 33398806
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Bacteriorhodopsin-like channelrhodopsins: Alternative mechanism for control of cation conductance.
    Sineshchekov OA; Govorunova EG; Li H; Spudich JL
    Proc Natl Acad Sci U S A; 2017 Nov; 114(45):E9512-E9519. PubMed ID: 29078348
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Pump-like channelrhodopsins: Not just bridging the gap between ion pumps and ion channels.
    Kishi KE; Kato HE
    Curr Opin Struct Biol; 2023 Apr; 79():102562. PubMed ID: 36871323
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Optogenetic Modulation of Ion Channels by Photoreceptive Proteins.
    Tsukamoto H; Furutani Y
    Adv Exp Med Biol; 2021; 1293():73-88. PubMed ID: 33398808
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ultra-low power deep sustained optogenetic excitation of human ventricular cardiomyocytes with red-shifted opsins: a computational study.
    Pyari G; Bansal H; Roy S
    J Physiol; 2022 Nov; 600(21):4653-4676. PubMed ID: 36068951
    [TBL] [Abstract][Full Text] [Related]  

  • 11. RubyACRs, nonalgal anion channelrhodopsins with highly red-shifted absorption.
    Govorunova EG; Sineshchekov OA; Li H; Wang Y; Brown LS; Spudich JL
    Proc Natl Acad Sci U S A; 2020 Sep; 117(37):22833-22840. PubMed ID: 32873643
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Theoretical prediction of broadband ambient light optogenetic vision restoration with ChRmine and its mutants.
    Bansal H; Pyari G; Roy S
    Sci Rep; 2024 May; 14(1):11642. PubMed ID: 38773346
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Theoretical analysis of optogenetic spiking with ChRmine, bReaChES and CsChrimson-expressing neurons for retinal prostheses.
    Bansal H; Gupta N; Roy S
    J Neural Eng; 2021 Jul; 18(4):. PubMed ID: 34229315
    [No Abstract]   [Full Text] [Related]  

  • 14. Anion-conducting channelrhodopsins with tuned spectra and modified kinetics engineered for optogenetic manipulation of behavior.
    Wietek J; Rodriguez-Rozada S; Tutas J; Tenedini F; Grimm C; Oertner TG; Soba P; Hegemann P; Wiegert JS
    Sci Rep; 2017 Nov; 7(1):14957. PubMed ID: 29097684
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Rhodopsin-Based Optogenetics: Basics and Applications.
    Alekseev A; Gordeliy V; Bamberg E
    Methods Mol Biol; 2022; 2501():71-100. PubMed ID: 35857223
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Crystal structure of the red light-activated channelrhodopsin Chrimson.
    Oda K; Vierock J; Oishi S; Rodriguez-Rozada S; Taniguchi R; Yamashita K; Wiegert JS; Nishizawa T; Hegemann P; Nureki O
    Nat Commun; 2018 Sep; 9(1):3949. PubMed ID: 30258177
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Enhancing Channelrhodopsins: An Overview.
    Wietek J; Prigge M
    Methods Mol Biol; 2016; 1408():141-65. PubMed ID: 26965121
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ion selectivity and competition in channelrhodopsins.
    Schneider F; Gradmann D; Hegemann P
    Biophys J; 2013 Jul; 105(1):91-100. PubMed ID: 23823227
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A blue-shifted anion channelrhodopsin from the Colpodellida alga Vitrella brassicaformis.
    Kojima K; Kawanishi S; Nishimura Y; Hasegawa M; Nakao S; Nagata Y; Yoshizawa S; Sudo Y
    Sci Rep; 2023 Apr; 13(1):6974. PubMed ID: 37117398
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Unifying photocycle model for light adaptation and temporal evolution of cation conductance in channelrhodopsin-2.
    Kuhne J; Vierock J; Tennigkeit SA; Dreier MA; Wietek J; Petersen D; Gavriljuk K; El-Mashtoly SF; Hegemann P; Gerwert K
    Proc Natl Acad Sci U S A; 2019 May; 116(19):9380-9389. PubMed ID: 31004059
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.