These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
222 related articles for article (PubMed ID: 35977941)
1. Cryo-EM structures of the channelrhodopsin ChRmine in lipid nanodiscs. Tucker K; Sridharan S; Adesnik H; Brohawn SG Nat Commun; 2022 Aug; 13(1):4842. PubMed ID: 35977941 [TBL] [Abstract][Full Text] [Related]
2. Structural basis for channel conduction in the pump-like channelrhodopsin ChRmine. Kishi KE; Kim YS; Fukuda M; Inoue M; Kusakizako T; Wang PY; Ramakrishnan C; Byrne EFX; Thadhani E; Paggi JM; Matsui TE; Yamashita K; Nagata T; Konno M; Quirin S; Lo M; Benster T; Uemura T; Liu K; Shibata M; Nomura N; Iwata S; Nureki O; Dror RO; Inoue K; Deisseroth K; Kato HE Cell; 2022 Feb; 185(4):672-689.e23. PubMed ID: 35114111 [TBL] [Abstract][Full Text] [Related]
3. The high-light-sensitivity mechanism and optogenetic properties of the bacteriorhodopsin-like channelrhodopsin GtCCR4. Tanaka T; Hososhima S; Yamashita Y; Sugimoto T; Nakamura T; Shigemura S; Iida W; Sano FK; Oda K; Uchihashi T; Katayama K; Furutani Y; Tsunoda SP; Shihoya W; Kandori H; Nureki O Mol Cell; 2024 Sep; 84(18):3530-3544.e6. PubMed ID: 39232582 [TBL] [Abstract][Full Text] [Related]
4. Conductance Mechanisms of Rapidly Desensitizing Cation Channelrhodopsins from Cryptophyte Algae. Sineshchekov OA; Govorunova EG; Li H; Wang Y; Melkonian M; Wong GK; Brown LS; Spudich JL mBio; 2020 Apr; 11(2):. PubMed ID: 32317325 [TBL] [Abstract][Full Text] [Related]
5. Structural foundations of optogenetics: Determinants of channelrhodopsin ion selectivity. Berndt A; Lee SY; Wietek J; Ramakrishnan C; Steinberg EE; Rashid AJ; Kim H; Park S; Santoro A; Frankland PW; Iyer SM; Pak S; Ährlund-Richter S; Delp SL; Malenka RC; Josselyn SA; Carlén M; Hegemann P; Deisseroth K Proc Natl Acad Sci U S A; 2016 Jan; 113(4):822-9. PubMed ID: 26699459 [TBL] [Abstract][Full Text] [Related]
6. Structural basis for ion selectivity in potassium-selective channelrhodopsins. Tajima S; Kim YS; Fukuda M; Jo Y; Wang PY; Paggi JM; Inoue M; Byrne EFX; Kishi KE; Nakamura S; Ramakrishnan C; Takaramoto S; Nagata T; Konno M; Sugiura M; Katayama K; Matsui TE; Yamashita K; Kim S; Ikeda H; Kim J; Kandori H; Dror RO; Inoue K; Deisseroth K; Kato HE Cell; 2023 Sep; 186(20):4325-4344.e26. PubMed ID: 37652010 [TBL] [Abstract][Full Text] [Related]
7. Channelrhodopsins with distinct chromophores and binding patterns. Shan Y; Zhao L; Chen M; Li X; Zhang M; Pei D Nat Commun; 2024 Aug; 15(1):7292. PubMed ID: 39181878 [TBL] [Abstract][Full Text] [Related]
8. Structure-Function Relationship of Channelrhodopsins. Kato HE Adv Exp Med Biol; 2021; 1293():35-53. PubMed ID: 33398806 [TBL] [Abstract][Full Text] [Related]
9. Bacteriorhodopsin-like channelrhodopsins: Alternative mechanism for control of cation conductance. Sineshchekov OA; Govorunova EG; Li H; Spudich JL Proc Natl Acad Sci U S A; 2017 Nov; 114(45):E9512-E9519. PubMed ID: 29078348 [TBL] [Abstract][Full Text] [Related]
10. Pump-like channelrhodopsins: Not just bridging the gap between ion pumps and ion channels. Kishi KE; Kato HE Curr Opin Struct Biol; 2023 Apr; 79():102562. PubMed ID: 36871323 [TBL] [Abstract][Full Text] [Related]
11. Optogenetic Modulation of Ion Channels by Photoreceptive Proteins. Tsukamoto H; Furutani Y Adv Exp Med Biol; 2021; 1293():73-88. PubMed ID: 33398808 [TBL] [Abstract][Full Text] [Related]
12. Ultra-low power deep sustained optogenetic excitation of human ventricular cardiomyocytes with red-shifted opsins: a computational study. Pyari G; Bansal H; Roy S J Physiol; 2022 Nov; 600(21):4653-4676. PubMed ID: 36068951 [TBL] [Abstract][Full Text] [Related]
13. RubyACRs, nonalgal anion channelrhodopsins with highly red-shifted absorption. Govorunova EG; Sineshchekov OA; Li H; Wang Y; Brown LS; Spudich JL Proc Natl Acad Sci U S A; 2020 Sep; 117(37):22833-22840. PubMed ID: 32873643 [TBL] [Abstract][Full Text] [Related]
14. Theoretical prediction of broadband ambient light optogenetic vision restoration with ChRmine and its mutants. Bansal H; Pyari G; Roy S Sci Rep; 2024 May; 14(1):11642. PubMed ID: 38773346 [TBL] [Abstract][Full Text] [Related]
15. Theoretical analysis of optogenetic spiking with ChRmine, bReaChES and CsChrimson-expressing neurons for retinal prostheses. Bansal H; Gupta N; Roy S J Neural Eng; 2021 Jul; 18(4):. PubMed ID: 34229315 [No Abstract] [Full Text] [Related]
20. [How to Choose the Best Optogenetic Tool for Your Research]. Hososhima S; Kandori H Brain Nerve; 2024 Jul; 76(7):835-842. PubMed ID: 38970320 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]