These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

173 related articles for article (PubMed ID: 35977980)

  • 1. An image based application in Matlab for automated modelling and morphological analysis of insect wings.
    Eshghi S; Nabati F; Shafaghi S; Nooraeefar V; Darvizeh A; Gorb SN; Rajabi H
    Sci Rep; 2022 Aug; 12(1):13917. PubMed ID: 35977980
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Allometric Scaling Reveals Evolutionary Constraint on Odonata Wing Cellularity via Critical Crack Length.
    Eshghi S; Rajabi H; Shafaghi S; Nabati F; Nazerian S; Darvizeh A; Gorb SN
    Adv Sci (Weinh); 2024 Jun; 11(23):e2400844. PubMed ID: 38613834
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Flexural stiffness in insect wings. I. Scaling and the influence of wing venation.
    Combes SA; Daniel TL
    J Exp Biol; 2003 Sep; 206(Pt 17):2979-87. PubMed ID: 12878666
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Basal Complex and Basal Venation of Odonata Wings: Structural Diversity and Potential Role in the Wing Deformation.
    Rajabi H; Ghoroubi N; Malaki M; Darvizeh A; Gorb SN
    PLoS One; 2016; 11(8):e0160610. PubMed ID: 27513753
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Biomechanical aspects of the insect wing: an analysis using the finite element method.
    Kesel AB; Philippi U; Nachtigall W
    Comput Biol Med; 1998 Jul; 28(4):423-37. PubMed ID: 9805202
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Flexural stiffness in insect wings. II. Spatial distribution and dynamic wing bending.
    Combes SA; Daniel TL
    J Exp Biol; 2003 Sep; 206(Pt 17):2989-97. PubMed ID: 12878667
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Numerical investigation of insect wing fracture behaviour.
    Rajabi H; Darvizeh A; Shafiei A; Taylor D; Dirks JH
    J Biomech; 2015 Jan; 48(1):89-94. PubMed ID: 25468669
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Biomechanical properties of insect wings: the stress stiffening effects on the asymmetric bending of the Allomyrina dichotoma beetle's hind wing.
    Ha NS; Truong QT; Goo NS; Park HC
    PLoS One; 2013; 8(12):e80689. PubMed ID: 24339878
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Insect wing damage: causes, consequences and compensatory mechanisms.
    Rajabi H; Dirks JH; Gorb SN
    J Exp Biol; 2020 May; 223(Pt 9):. PubMed ID: 32366698
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Tensile mechanical properties and finite element simulation of the wings of the butterfly Tirumala limniace.
    Shen H; Ji A; Li Q; Li X; Ma Y
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2023 Mar; 209(2):239-251. PubMed ID: 35840718
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Design and evaluation of a deformable wing configuration for economical hovering flight of an insect-like tailless flying robot.
    Phan HV; Park HC
    Bioinspir Biomim; 2018 Apr; 13(3):036009. PubMed ID: 29493535
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Artificial insect wings with biomimetic wing morphology and mechanical properties.
    Liu Z; Yan X; Qi M; Zhu Y; Huang D; Zhang X; Lin L
    Bioinspir Biomim; 2017 Sep; 12(5):056007. PubMed ID: 28696330
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Resilin in dragonfly and damselfly wings and its implications for wing flexibility.
    Donoughe S; Crall JD; Merz RA; Combes SA
    J Morphol; 2011 Dec; 272(12):1409-21. PubMed ID: 21915894
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Circulation in Insect Wings.
    Salcedo MK; Socha JJ
    Integr Comp Biol; 2020 Nov; 60(5):1208-1220. PubMed ID: 32870980
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Approaches to the structural modelling of insect wings.
    Wootton RJ; Herbert RC; Young PG; Evans KE
    Philos Trans R Soc Lond B Biol Sci; 2003 Sep; 358(1437):1577-87. PubMed ID: 14561349
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Biomechanical strategies underlying the durability of a wing-to-wing coupling mechanism.
    Toofani A; Eraghi SH; Khorsandi M; Khaheshi A; Darvizeh A; Gorb S; Rajabi H
    Acta Biomater; 2020 Jul; 110():188-195. PubMed ID: 32360529
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Details of insect wing design and deformation enhance aerodynamic function and flight efficiency.
    Young J; Walker SM; Bomphrey RJ; Taylor GK; Thomas AL
    Science; 2009 Sep; 325(5947):1549-52. PubMed ID: 19762645
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An experimental comparative study of the efficiency of twisted and flat flapping wings during hovering flight.
    Phan HV; Truong QT; Park HC
    Bioinspir Biomim; 2017 Apr; 12(3):036009. PubMed ID: 28281465
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Simulation-based insect-inspired flight systems.
    Liu H
    Curr Opin Insect Sci; 2020 Dec; 42():105-109. PubMed ID: 33068784
    [TBL] [Abstract][Full Text] [Related]  

  • 20. On the fracture resistance of dragonfly wings.
    Rudolf J; Wang LY; Gorb SN; Rajabi H
    J Mech Behav Biomed Mater; 2019 Nov; 99():127-133. PubMed ID: 31351402
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.