These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

153 related articles for article (PubMed ID: 35977980)

  • 21. Flight efficiency is a key to diverse wing morphologies in small insects.
    Engels T; Kolomenskiy D; Lehmann FO
    J R Soc Interface; 2021 Oct; 18(183):20210518. PubMed ID: 34665973
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Bristles reduce the force required to 'fling' wings apart in the smallest insects.
    Jones SK; Yun YJ; Hedrick TL; Griffith BE; Miller LA
    J Exp Biol; 2016 Dec; 219(Pt 23):3759-3772. PubMed ID: 27903629
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A new twist on gyroscopic sensing: body rotations lead to torsion in flapping, flexing insect wings.
    Eberle AL; Dickerson BH; Reinhall PG; Daniel TL
    J R Soc Interface; 2015 Mar; 12(104):20141088. PubMed ID: 25631565
    [TBL] [Abstract][Full Text] [Related]  

  • 24. DrawWing, a program for numerical description of insect wings.
    Tofilski A
    J Insect Sci; 2004; 4():17. PubMed ID: 15861233
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Measurement of shape and deformation of insect wing.
    Yin D; Wei Z; Wang Z; Zhou C
    Rev Sci Instrum; 2018 Jan; 89(1):014301. PubMed ID: 29390685
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The aerodynamics of insect flight.
    Sane SP
    J Exp Biol; 2003 Dec; 206(Pt 23):4191-208. PubMed ID: 14581590
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Three-dimensional wing structure attenuates aerodynamic efficiency in flapping fly wings.
    Engels T; Wehmann HN; Lehmann FO
    J R Soc Interface; 2020 Mar; 17(164):20190804. PubMed ID: 32156185
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Nonuniform structural properties of wings confer sensing advantages.
    Weber AI; Babaei M; Mamo A; Brunton BW; Daniel TL; Bergbreiter S
    J R Soc Interface; 2023 Mar; 20(200):20220765. PubMed ID: 36946090
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Optimal pitching axis location of flapping wings for efficient hovering flight.
    Wang Q; Goosen JFL; van Keulen F
    Bioinspir Biomim; 2017 Sep; 12(5):056001. PubMed ID: 28632144
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A chordwise offset of the wing-pitch axis enhances rotational aerodynamic forces on insect wings: a numerical study.
    van Veen WG; van Leeuwen JL; Muijres FT
    J R Soc Interface; 2019 Jun; 16(155):20190118. PubMed ID: 31213176
    [TBL] [Abstract][Full Text] [Related]  

  • 31. How oscillating aerodynamic forces explain the timbre of the hummingbird's hum and other animals in flapping flight.
    Hightower BJ; Wijnings PW; Scholte R; Ingersoll R; Chin DD; Nguyen J; Shorr D; Lentink D
    Elife; 2021 Mar; 10():. PubMed ID: 33724182
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Effect of passive wing pitching on flight control in a hovering model insect and flapping-wing micro air vehicle.
    Hao J; Wu J; Zhang Y
    Bioinspir Biomim; 2021 Sep; 16(6):. PubMed ID: 34450611
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A simple developmental model recapitulates complex insect wing venation patterns.
    Hoffmann J; Donoughe S; Li K; Salcedo MK; Rycroft CH
    Proc Natl Acad Sci U S A; 2018 Oct; 115(40):9905-9910. PubMed ID: 30224459
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Effects of flexibility and aspect ratio on the aerodynamic performance of flapping wings.
    Fu J; Liu X; Shyy W; Qiu H
    Bioinspir Biomim; 2018 Mar; 13(3):036001. PubMed ID: 29372888
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Deformable model of a butterfly in motion on the example of Attacus atlas.
    Kunicka-Kowalska Z; Landowski M; Sibilski K
    J Mech Behav Biomed Mater; 2022 Sep; 133():105351. PubMed ID: 35839632
    [TBL] [Abstract][Full Text] [Related]  

  • 36.
    Eshghi S; Nooraeefar V; Darvizeh A; Gorb SN; Rajabi H
    Insects; 2020 Aug; 11(8):. PubMed ID: 32824828
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Into thin air: Contributions of aerodynamic and inertial-elastic forces to wing bending in the hawkmoth Manduca sexta.
    Combes SA; Daniel TL
    J Exp Biol; 2003 Sep; 206(Pt 17):2999-3006. PubMed ID: 12878668
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The function of resilin in honeybee wings.
    Ma Y; Ning JG; Ren HL; Zhang PF; Zhao HY
    J Exp Biol; 2015 Jul; 218(Pt 13):2136-42. PubMed ID: 25987733
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Biomechanics of fore wing to hind wing coupling in the southern green stink bug Nezara viridula (Pentatomidae).
    Ma Y; Wan C; Gorb S; Rajabi H
    Acta Biomater; 2019 Dec; 100():10-17. PubMed ID: 31542500
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Wing flexibility reduces the energetic requirements of insect flight.
    Reid HE; Schwab RK; Maxcer M; Peterson RKD; Johnson EL; Jankauski M
    Bioinspir Biomim; 2019 Jul; 14(5):056007. PubMed ID: 31252414
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.