BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

165 related articles for article (PubMed ID: 35977997)

  • 1. Nucleation and growth of gold nanoparticles in the presence of different surfactants. A dissipative particle dynamics study.
    Suárez-López R; Puntes VF; Bastús NG; Hervés C; Jaime C
    Sci Rep; 2022 Aug; 12(1):13926. PubMed ID: 35977997
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Integration of gold nanoparticles into bilayer structures via adaptive surface chemistry.
    Lee HY; Shin SH; Abezgauz LL; Lewis SA; Chirsan AM; Danino DD; Bishop KJ
    J Am Chem Soc; 2013 Apr; 135(16):5950-3. PubMed ID: 23565704
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comprehensive review of the interfacial behavior of water/oil/surfactant systems using dissipative particle dynamics simulation.
    Ahmadi M; Aliabadian E; Liu B; Lei X; Khalilpoorkordi P; Hou Q; Wang Y; Chen Z
    Adv Colloid Interface Sci; 2022 Nov; 309():102774. PubMed ID: 36152373
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dissipative particle dynamics simulations in colloid and Interface science: a review.
    Santo KP; Neimark AV
    Adv Colloid Interface Sci; 2021 Dec; 298():102545. PubMed ID: 34757286
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Gold nanoparticles interacting with synthetic lipid rafts: an AFM investigation.
    Ridolfi A; Caselli L; Montis C; Mangiapia G; Berti D; Brucale M; Valle F
    J Microsc; 2020 Dec; 280(3):194-203. PubMed ID: 32432336
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Influence of hydrophobic alkylated gold nanoparticles on the phase behavior of monolayers of DPPC and clinical lung surfactant.
    Tatur S; Badia A
    Langmuir; 2012 Jan; 28(1):628-39. PubMed ID: 22118426
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Surfactants, not size or zeta-potential influence blood-brain barrier passage of polymeric nanoparticles.
    Voigt N; Henrich-Noack P; Kockentiedt S; Hintz W; Tomas J; Sabel BA
    Eur J Pharm Biopharm; 2014 May; 87(1):19-29. PubMed ID: 24607790
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of concentration of PEG coated gold nanoparticle on lung surfactant studied with coarse-grained molecular dynamics simulations.
    Jiao F; Sang J; Liu Z; Liu W; Liang W
    Biophys Chem; 2020 Nov; 266():106457. PubMed ID: 32890945
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Kinetic and Mechanistic Insight into the Surfactant-Induced Aggregation of Gold Nanoparticles and Their Catalytic Efficacy: Importance of Surface Restructuring.
    Saini B; Khamari L; Mukherjee TK
    J Phys Chem B; 2022 Mar; 126(10):2130-2141. PubMed ID: 35254808
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The critical role of surfactants in the growth of cobalt nanoparticles.
    Bao Y; An W; Turner CH; Krishnan KM
    Langmuir; 2010 Jan; 26(1):478-83. PubMed ID: 19743830
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Size dependence of gold nanoparticle interactions with a supported lipid bilayer: A QCM-D study.
    Bailey CM; Kamaloo E; Waterman KL; Wang KF; Nagarajan R; Camesano TA
    Biophys Chem; 2015; 203-204():51-61. PubMed ID: 26042544
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Lamellar phase supported synthesis of colloidal gold nanoparticles, nanoclusters, and nanowires.
    Bakshi MS; Sharma P; Banipal TS; Kaur G; KanjiroTorigoe ; Petersen NO; Possmayer F
    J Nanosci Nanotechnol; 2007 Mar; 7(3):916-24. PubMed ID: 17450854
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Nucleation and growth of surfactant-passivated CdS and HgS nanoparticles: Time-dependent absorption and luminescence profiles.
    Mehta SK; Kumar S; Chaudhary S; Bhasin KK
    Nanoscale; 2010 Jan; 2(1):145-52. PubMed ID: 20648377
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Distribution of functionalized gold nanoparticles between water and lipid bilayers as model cell membranes.
    Hou WC; Moghadam BY; Corredor C; Westerhoff P; Posner JD
    Environ Sci Technol; 2012 Feb; 46(3):1869-76. PubMed ID: 22242832
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Separation and recycling of nanoparticles using cloud point extraction with non-ionic surfactant mixtures.
    Nazar MF; Shah SS; Eastoe J; Khan AM; Shah A
    J Colloid Interface Sci; 2011 Nov; 363(2):490-6. PubMed ID: 21868022
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Synergistic effects of surfactants and heterogeneous nanoparticles at oil-water interface: Insights from computations.
    Vu TV; Papavassiliou DV
    J Colloid Interface Sci; 2019 Oct; 553():50-58. PubMed ID: 31185383
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Molecular Modeling of the Fluorination Effect on the Penetration of Nanoparticles across Lipid Bilayers.
    Wang M; Ni SD; Yin YW; Ma YQ; Ding HM
    Langmuir; 2024 Jan; 40(2):1295-1304. PubMed ID: 38173387
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Adhesion, intake, and release of nanoparticles by lipid bilayers.
    Burgess S; Wang Z; Vishnyakov A; Neimark AV
    J Colloid Interface Sci; 2020 Mar; 561():58-70. PubMed ID: 31812867
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Superoxide Scavenging Activity of Gold, Silver, and Platinum Nanoparticles Capped with Sugar-based Nonionic Surfactants.
    Matsuoka K; Nakatani Y; Yoshimura T; Akasaki T
    J Oleo Sci; 2019; 68(9):847-854. PubMed ID: 31484901
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Surfactants-aided syntheses of different sizes and triangular shape of gold nanoparticles using trisodium citrate in environmentally friendly and photoinduced methods.
    Su YH; Lai WH; Chang SH; Hon MH
    J Nanosci Nanotechnol; 2007 Sep; 7(9):3146-51. PubMed ID: 18019141
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.