These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

176 related articles for article (PubMed ID: 35978035)

  • 1. A comparison of reinforcement learning models of human spatial navigation.
    He Q; Liu JL; Eschapasse L; Beveridge EH; Brown TI
    Sci Rep; 2022 Aug; 12(1):13923. PubMed ID: 35978035
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Neural signatures of reinforcement learning correlate with strategy adoption during spatial navigation.
    Anggraini D; Glasauer S; Wunderlich K
    Sci Rep; 2018 Jul; 8(1):10110. PubMed ID: 29973606
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Predictive maps in rats and humans for spatial navigation.
    de Cothi W; Nyberg N; Griesbauer EM; Ghanamé C; Zisch F; Lefort JM; Fletcher L; Newton C; Renaudineau S; Bendor D; Grieves R; Duvelle É; Barry C; Spiers HJ
    Curr Biol; 2022 Sep; 32(17):3676-3689.e5. PubMed ID: 35863351
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Neuro-Inspired Reinforcement Learning to Improve Trajectory Prediction in Reward-Guided Behavior.
    Chen BW; Yang SH; Kuo CH; Chen JW; Lo YC; Kuo YT; Lin YC; Chang HC; Lin SH; Yu X; Qu B; Ro SV; Lai HY; Chen YY
    Int J Neural Syst; 2022 Sep; 32(9):2250038. PubMed ID: 35989578
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Understanding Differences in Wayfinding Strategies.
    Hegarty M; He C; Boone AP; Yu S; Jacobs EG; Chrastil ER
    Top Cogn Sci; 2023 Jan; 15(1):102-119. PubMed ID: 34973064
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Multiple memory systems as substrates for multiple decision systems.
    Doll BB; Shohamy D; Daw ND
    Neurobiol Learn Mem; 2015 Jan; 117():4-13. PubMed ID: 24846190
    [TBL] [Abstract][Full Text] [Related]  

  • 7. RL-DOVS: Reinforcement Learning for Autonomous Robot Navigation in Dynamic Environments.
    Mackay AK; Riazuelo L; Montano L
    Sensors (Basel); 2022 May; 22(10):. PubMed ID: 35632257
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Childhood wayfinding experience explains sex and individual differences in adult wayfinding strategy and anxiety.
    Vieites V; Pruden SM; Reeb-Sutherland BC
    Cogn Res Princ Implic; 2020 Mar; 5(1):12. PubMed ID: 32185533
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A reinforcement-based mechanism for discontinuous learning.
    Reddy G
    Proc Natl Acad Sci U S A; 2022 Dec; 119(49):e2215352119. PubMed ID: 36442113
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Vision-Based Robot Navigation through Combining Unsupervised Learning and Hierarchical Reinforcement Learning.
    Zhou X; Bai T; Gao Y; Han Y
    Sensors (Basel); 2019 Apr; 19(7):. PubMed ID: 30939807
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Deep reinforcement learning to study spatial navigation, learning and memory in artificial and biological agents.
    Bermudez-Contreras E
    Biol Cybern; 2021 Apr; 115(2):131-134. PubMed ID: 33564968
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Neural correlates of forward planning in a spatial decision task in humans.
    Simon DA; Daw ND
    J Neurosci; 2011 Apr; 31(14):5526-39. PubMed ID: 21471389
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Reinforcement learning approaches to hippocampus-dependent flexible spatial navigation.
    Tessereau C; O'Dea R; Coombes S; Bast T
    Brain Neurosci Adv; 2021; 5():2398212820975634. PubMed ID: 33954259
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A robotic model of hippocampal reverse replay for reinforcement learning.
    Whelan MT; Jimenez-Rodriguez A; Prescott TJ; Vasilaki E
    Bioinspir Biomim; 2022 Dec; 18(1):. PubMed ID: 36327454
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Frontoparietal network activity during model-based reinforcement learning updates is reduced among adolescents with severe sexual abuse.
    Letkiewicz AM; Cochran AL; Cisler JM
    J Psychiatr Res; 2022 Jan; 145():256-262. PubMed ID: 33199053
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Interactions of spatial strategies producing generalization gradient and blocking: A computational approach.
    Dollé L; Chavarriaga R; Guillot A; Khamassi M
    PLoS Comput Biol; 2018 Apr; 14(4):e1006092. PubMed ID: 29630600
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Model-Based Reinforcement Learning with Automated Planning for Network Management.
    Ordonez A; Caicedo OM; Villota W; Rodriguez-Vivas A; da Fonseca NLS
    Sensors (Basel); 2022 Aug; 22(16):. PubMed ID: 36016062
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Spatial thinking, cognitive mapping, and spatial awareness.
    Ishikawa T
    Cogn Process; 2021 Sep; 22(Suppl 1):89-96. PubMed ID: 34313882
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Heterogeneity of strategy use in the Iowa gambling task: a comparison of win-stay/lose-shift and reinforcement learning models.
    Worthy DA; Hawthorne MJ; Otto AR
    Psychon Bull Rev; 2013 Apr; 20(2):364-71. PubMed ID: 23065763
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Exploration in neo-Hebbian reinforcement learning: Computational approaches to the exploration-exploitation balance with bio-inspired neural networks.
    Triche A; Maida AS; Kumar A
    Neural Netw; 2022 Jul; 151():16-33. PubMed ID: 35367735
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.