These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

168 related articles for article (PubMed ID: 35978040)

  • 1. Binary dose level classification of tumour microvascular response to radiotherapy using artificial intelligence analysis of optical coherence tomography images.
    Majumdar A; Allam N; Zabel WJ; Demidov V; Flueraru C; Vitkin IA
    Sci Rep; 2022 Aug; 12(1):13995. PubMed ID: 35978040
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Longitudinal in-vivo quantification of tumour microvascular heterogeneity by optical coherence angiography in pre-clinical radiation therapy.
    Allam N; Jeffrey Zabel W; Demidov V; Jones B; Flueraru C; Taylor E; Alex Vitkin I
    Sci Rep; 2022 Apr; 12(1):6140. PubMed ID: 35414078
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Applications of artificial intelligence in stereotactic body radiation therapy.
    Mancosu P; Lambri N; Castiglioni I; Dei D; Iori M; Loiacono D; Russo S; Talamonti C; Villaggi E; Scorsetti M; Avanzo M
    Phys Med Biol; 2022 Aug; 67(16):. PubMed ID: 35785778
    [TBL] [Abstract][Full Text] [Related]  

  • 4. In-vivo longitudinal imaging of microvascular changes in irradiated oral mucosa of radiotherapy cancer patients using optical coherence tomography.
    Maslennikova AV; Sirotkina MA; Moiseev AA; Finagina ES; Ksenofontov SY; Gelikonov GV; Matveev LA; Kiseleva EB; Zaitsev VY; Zagaynova EV; Feldchtein FI; Gladkova ND; Vitkin A
    Sci Rep; 2017 Nov; 7(1):16505. PubMed ID: 29184130
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Optical coherence tomography platform for microvascular imaging and quantification: initial experience in late oral radiation toxicity patients.
    Davoudi B; Morrison M; Bizheva K; Yang VX; Dinniwell R; Levin W; Vitkin IA
    J Biomed Opt; 2013 Jul; 18(7):76008. PubMed ID: 23843086
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Re-irradiation stereotactic body radiotherapy for spinal metastases: a multi-institutional outcome analysis.
    Hashmi A; Guckenberger M; Kersh R; Gerszten PC; Mantel F; Grills IS; Flickinger JC; Shin JH; Fahim DK; Winey B; Oh K; John Cho BC; Létourneau D; Sheehan J; Sahgal A
    J Neurosurg Spine; 2016 Nov; 25(5):646-653. PubMed ID: 27341054
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Preclinical longitudinal imaging of tumor microvascular radiobiological response with functional optical coherence tomography.
    Demidov V; Maeda A; Sugita M; Madge V; Sadanand S; Flueraru C; Vitkin IA
    Sci Rep; 2018 Jan; 8(1):38. PubMed ID: 29311686
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Stereotactic body radiation therapy for benign spine tumors: is dose de-escalation appropriate?
    Kalash R; Glaser SM; Flickinger JC; Burton S; Heron DE; Gerszten PC; Engh JA; Amankulor NM; Vargo JA
    J Neurosurg Spine; 2018 Aug; 29(2):220-225. PubMed ID: 29799334
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Artificial Intelligence and Optical Coherence Tomography Imaging.
    Kapoor R; Whigham BT; Al-Aswad LA
    Asia Pac J Ophthalmol (Phila); 2019; 8(2):187-194. PubMed ID: 30997756
    [TBL] [Abstract][Full Text] [Related]  

  • 10. In vivo optical imaging of human retinal capillary networks using speckle variance optical coherence tomography with quantitative clinico-histological correlation.
    Chan G; Balaratnasingam C; Xu J; Mammo Z; Han S; Mackenzie P; Merkur A; Kirker A; Albiani D; Sarunic MV; Yu DY
    Microvasc Res; 2015 Jul; 100():32-9. PubMed ID: 25917012
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Preclinical quantitative in-vivo assessment of skin tissue vascularity in radiation-induced fibrosis with optical coherence tomography.
    Demidov V; Zhao X; Demidova O; Pang HYM; Flueraru C; Liu FF; Vitkin IA
    J Biomed Opt; 2018 Oct; 23(10):1-9. PubMed ID: 30315644
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Novel stereotactic body radiation therapy (SBRT)-based partial tumor irradiation targeting hypoxic segment of bulky tumors (SBRT-PATHY): improvement of the radiotherapy outcome by exploiting the bystander and abscopal effects.
    Tubin S; Popper HH; Brcic L
    Radiat Oncol; 2019 Jan; 14(1):21. PubMed ID: 30696472
    [TBL] [Abstract][Full Text] [Related]  

  • 13. An artificial intelligence-driven agent for real-time head-and-neck IMRT plan generation using conditional generative adversarial network (cGAN).
    Li X; Wang C; Sheng Y; Zhang J; Wang W; Yin FF; Wu Q; Wu QJ; Ge Y
    Med Phys; 2021 Jun; 48(6):2714-2723. PubMed ID: 33577108
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Stereotactic body radiotherapy (SBRT) for medically inoperable lung metastases-A pooled analysis of the German working group "stereotactic radiotherapy".
    Rieber J; Streblow J; Uhlmann L; Flentje M; Duma M; Ernst I; Blanck O; Wittig A; Boda-Heggemann J; Krempien R; Lohaus F; Klass ND; Eble MJ; Imhoff D; Kahl H; Petersen C; Gerum S; Henkenberens C; Adebahr S; Hass P; Schrade E; Wendt TG; Hildebrandt G; Andratschke N; Sterzing F; Guckenberger M
    Lung Cancer; 2016 Jul; 97():51-8. PubMed ID: 27237028
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Impact of use of optical surface imaging on initial patient setup for stereotactic body radiotherapy treatments.
    Leong B; Padilla L
    J Appl Clin Med Phys; 2019 Dec; 20(12):149-158. PubMed ID: 31833639
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Hepatic reaction dose for parenchymal changes on Gd-EOB-DTPA-enhanced magnetic resonance images after stereotactic body radiation therapy for hepatocellular carcinoma.
    Jung J; Yoon SM; Cho B; Choi YE; Kwak J; Kim SY; Lee SW; Ahn SD; Choi EK; Kim JH
    J Med Imaging Radiat Oncol; 2016 Feb; 60(1):96-101. PubMed ID: 26503671
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Microvascular contrast enhancement in optical coherence tomography using microbubbles.
    Assadi H; Demidov V; Karshafian R; Douplik A; Vitkin IA
    J Biomed Opt; 2016 Jul; 21(7):76014. PubMed ID: 27533242
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Evaluation of interfractional variation of the centroid position and volume of internal target volume during stereotactic body radiotherapy of lung cancer using cone-beam computed tomography.
    Sun Y; Ge H; Cheng S; Yang C; Zhu Q; Li D; Tian Y
    J Appl Clin Med Phys; 2016 Mar; 17(2):461-472. PubMed ID: 27074466
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Radiation-induced rib fracture after stereotactic body radiotherapy with a total dose of 54-56 Gy given in 9-7 fractions for patients with peripheral lung tumor: impact of maximum dose and fraction size.
    Aoki M; Sato M; Hirose K; Akimoto H; Kawaguchi H; Hatayama Y; Ono S; Takai Y
    Radiat Oncol; 2015 Apr; 10():99. PubMed ID: 25897487
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Feasibility and preliminary clinical results of linac-based Stereotactic Body Radiotherapy for spinal metastases using a dedicated contouring and planning system.
    Giaj-Levra N; Niyazi M; Figlia V; Napoli G; Mazzola R; Nicosia L; Corradini S; Ruggieri R; Minniti G; Alongi F
    Radiat Oncol; 2019 Oct; 14(1):184. PubMed ID: 31655620
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.