These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

156 related articles for article (PubMed ID: 35978129)

  • 21. A multiscale view of the Phanerozoic fossil record reveals the three major biotic transitions.
    Rojas A; Calatayud J; Kowalewski M; Neuman M; Rosvall M
    Commun Biol; 2021 Mar; 4(1):309. PubMed ID: 33686149
    [TBL] [Abstract][Full Text] [Related]  

  • 22. [Hyperbolic growth of marine and continental biodiversity through the phanerozoic and community evolution].
    Markov AV; Korotaev AV
    Zh Obshch Biol; 2008; 69(3):175-94. PubMed ID: 18677962
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The influence of the biological pump on ocean chemistry: implications for long-term trends in marine redox chemistry, the global carbon cycle, and marine animal ecosystems.
    Meyer KM; Ridgwell A; Payne JL
    Geobiology; 2016 May; 14(3):207-19. PubMed ID: 26928862
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Neoproterozoic to early Phanerozoic rise in island arc redox state due to deep ocean oxygenation and increased marine sulfate levels.
    Stolper DA; Bucholz CE
    Proc Natl Acad Sci U S A; 2019 Apr; 116(18):8746-8755. PubMed ID: 30975756
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Hydroids (Cnidaria, Hydrozoa) from Mauritanian Coral Mounds.
    Gil M; Ramil F; AgÍs JA
    Zootaxa; 2020 Nov; 4878(3):zootaxa.4878.3.2. PubMed ID: 33311142
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Tracing the stepwise oxygenation of the Proterozoic ocean.
    Scott C; Lyons TW; Bekker A; Shen Y; Poulton SW; Chu X; Anbar AD
    Nature; 2008 Mar; 452(7186):456-9. PubMed ID: 18368114
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Upper ocean oxygenation, evolution of RuBisCO and the Phanerozoic succession of phytoplankton.
    Rickaby REM; Eason Hubbard MR
    Free Radic Biol Med; 2019 Aug; 140():295-304. PubMed ID: 31075497
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Post-extinction recovery of the Phanerozoic oceans and biodiversity hotspots.
    Cermeño P; García-Comas C; Pohl A; Williams S; Benton MJ; Chaudhary C; Le Gland G; Müller RD; Ridgwell A; Vallina SM
    Nature; 2022 Jul; 607(7919):507-511. PubMed ID: 35831505
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Redox stabilization of the atmosphere and oceans by phosphorus-limited marine productivity.
    Van Cappellen P; Ingall ED
    Science; 1996 Jan; 271():493-6. PubMed ID: 11541251
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Marine anoxia and delayed Earth system recovery after the end-Permian extinction.
    Lau KV; Maher K; Altiner D; Kelley BM; Kump LR; Lehrmann DJ; Silva-Tamayo JC; Weaver KL; Yu M; Payne JL
    Proc Natl Acad Sci U S A; 2016 Mar; 113(9):2360-5. PubMed ID: 26884155
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Oceanic oxygenation events in the anoxic Ediacaran ocean.
    Sahoo SK; Planavsky NJ; Jiang G; Kendall B; Owens JD; Wang X; Shi X; Anbar AD; Lyons TW
    Geobiology; 2016 Sep; 14(5):457-68. PubMed ID: 27027776
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Biogeochemical Transformations in the History of the Ocean.
    Lenton TM; Daines SJ
    Ann Rev Mar Sci; 2017 Jan; 9():31-58. PubMed ID: 27575740
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Rapid expansion of oceanic anoxia immediately before the end-Permian mass extinction.
    Brennecka GA; Herrmann AD; Algeo TJ; Anbar AD
    Proc Natl Acad Sci U S A; 2011 Oct; 108(43):17631-4. PubMed ID: 21987794
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The effects of marine eukaryote evolution on phosphorus, carbon and oxygen cycling across the Proterozoic-Phanerozoic transition.
    Lenton TM; Daines SJ
    Emerg Top Life Sci; 2018 Sep; 2(2):267-278. PubMed ID: 32412617
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A New biological proxy for deep-sea paleo-oxygen: Pores of epifaunal benthic foraminifera.
    Rathburn AE; Willingham J; Ziebis W; Burkett AM; Corliss BH
    Sci Rep; 2018 Jun; 8(1):9456. PubMed ID: 29930265
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Rapid ocean acidification and protracted Earth system recovery followed the end-Cretaceous Chicxulub impact.
    Henehan MJ; Ridgwell A; Thomas E; Zhang S; Alegret L; Schmidt DN; Rae JWB; Witts JD; Landman NH; Greene SE; Huber BT; Super JR; Planavsky NJ; Hull PM
    Proc Natl Acad Sci U S A; 2019 Nov; 116(45):22500-22504. PubMed ID: 31636204
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Oxygen isotope composition of the Phanerozoic ocean and a possible solution to the dolomite problem.
    Ryb U; Eiler JM
    Proc Natl Acad Sci U S A; 2018 Jun; 115(26):6602-6607. PubMed ID: 29891710
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Biotic and human vulnerability to projected changes in ocean biogeochemistry over the 21st century.
    Mora C; Wei CL; Rollo A; Amaro T; Baco AR; Billett D; Bopp L; Chen Q; Collier M; Danovaro R; Gooday AJ; Grupe BM; Halloran PR; Ingels J; Jones DO; Levin LA; Nakano H; Norling K; Ramirez-Llodra E; Rex M; Ruhl HA; Smith CR; Sweetman AK; Thurber AR; Tjiputra JF; Usseglio P; Watling L; Wu T; Yasuhara M
    PLoS Biol; 2013 Oct; 11(10):e1001682. PubMed ID: 24143135
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Isotope composition and volume of Earth's early oceans.
    Pope EC; Bird DK; Rosing MT
    Proc Natl Acad Sci U S A; 2012 Mar; 109(12):4371-6. PubMed ID: 22392985
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Polar oceans in a changing climate.
    Barnes DKA; Tarling GA
    Curr Biol; 2017 Jun; 27(11):R454-R460. PubMed ID: 28586678
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.