BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

186 related articles for article (PubMed ID: 35978337)

  • 21. A single freeze-thawing cycle for highly efficient solubilization of inclusion body proteins and its refolding into bioactive form.
    Qi X; Sun Y; Xiong S
    Microb Cell Fact; 2015 Feb; 14():24. PubMed ID: 25879903
    [TBL] [Abstract][Full Text] [Related]  

  • 22. High throughput purification of recombinant human growth hormone using radial flow chromatography.
    Singh SM; Sharma A; Panda AK
    Protein Expr Purif; 2009 Nov; 68(1):54-9. PubMed ID: 19500673
    [TBL] [Abstract][Full Text] [Related]  

  • 23. High hydrostatic pressure enables almost 100% refolding of recombinant human ciliary neurotrophic factor from inclusion bodies at high concentration.
    Wang Q; Liu Y; Zhang C; Guo F; Feng C; Li X; Shi H; Su Z
    Protein Expr Purif; 2017 May; 133():152-159. PubMed ID: 28323167
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Quality comparison of recombinant soluble proteins and proteins solubilized from bacterial inclusion bodies.
    López-Cano A; Sicilia P; Gaja C; Arís A; Garcia-Fruitós E
    N Biotechnol; 2022 Dec; 72():58-63. PubMed ID: 36150649
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Investigation on solubilization protocols in the refolding of the thioredoxin TsnC from Xylella fastidiosa by high hydrostatic pressure approach.
    Lemke LS; Chura-Chambi RM; Rodrigues D; Cussiol JR; Malavasi NV; Alegria TG; Netto LE; Morganti L
    Protein Expr Purif; 2015 Feb; 106():72-7. PubMed ID: 25448595
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Unit Operation-Spanning Investigation of the Redox System.
    Ebner J; Humer D; Sedlmayr V
    Methods Mol Biol; 2023; 2617():165-176. PubMed ID: 36656523
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Comparative study to develop a single method for retrieving wide class of recombinant proteins from classical inclusion bodies.
    Padhiar AA; Chanda W; Joseph TP; Guo X; Liu M; Sha L; Batool S; Gao Y; Zhang W; Huang M; Zhong M
    Appl Microbiol Biotechnol; 2018 Mar; 102(5):2363-2377. PubMed ID: 29387954
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Refolding by high pressure of a toxin containing seven disulfide bonds: bothropstoxin-1 from Bothrops jararacussu.
    Balduino KN; Spencer PJ; Malavasi NV; Chura-Chambi RM; Lemke LS; Morganti L
    Mol Biotechnol; 2011 Jul; 48(3):228-34. PubMed ID: 21181456
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Efficient refolding of the bifunctional therapeutic fusion protein VAS-TRAIL by a triple agent solution.
    Fan J; Wang Z; Huang L; Shen Y
    Protein Expr Purif; 2016 Sep; 125():68-73. PubMed ID: 26358405
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Soybean disease resistance protein RHG1-LRR domain expressed, purified and refolded from Escherichia coli inclusion bodies: preparation for a functional analysis.
    Afzal AJ; Lightfoot DA
    Protein Expr Purif; 2007 Jun; 53(2):346-55. PubMed ID: 17287130
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Kinetics of inclusion body formation and its correlation with the characteristics of protein aggregates in Escherichia coli.
    Upadhyay AK; Murmu A; Singh A; Panda AK
    PLoS One; 2012; 7(3):e33951. PubMed ID: 22479486
    [TBL] [Abstract][Full Text] [Related]  

  • 32. One-step heating strategy for efficient solubilization of recombinant spider silk protein from inclusion bodies.
    Cai H; Chen G; Yu H; Tang Y; Xiong S; Qi X
    BMC Biotechnol; 2020 Jul; 20(1):37. PubMed ID: 32650749
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Expression of membrane beta-barrel protein in E. coli at low temperatures: Structure of Yersinia pseudotuberculosis OmpF porin inclusion bodies.
    Solov'eva TF; Bakholdina SI; Khomenko VA; Sidorin EV; Kim NY; Novikova OD; Shnyrov VL; Stenkova AM; Eremeev VI; Bystritskaya EP; Isaeva MP
    Biochim Biophys Acta Biomembr; 2022 Sep; 1864(9):183971. PubMed ID: 35643329
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Solubilization and refolding of inclusion body proteins.
    Singh A; Upadhyay V; Panda AK
    Methods Mol Biol; 2015; 1258():283-91. PubMed ID: 25447870
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Refolding of Proteins Expressed as Inclusion Bodies in E. coli.
    Sharma R; Anupa A; Rathore AS
    Methods Mol Biol; 2023; 2617():201-208. PubMed ID: 36656526
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Characterization of recombinant pectate lyase refolded from inclusion bodies generated in E. coli BL21(DE3).
    Kumar S; Jain KK; Singh A; Panda AK; Kuhad RC
    Protein Expr Purif; 2015 Jun; 110():43-51. PubMed ID: 25497420
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Refolding of endostatin from inclusion bodies using high hydrostatic pressure.
    Chura-Chambi RM; Genova LA; Affonso R; Morganti L
    Anal Biochem; 2008 Aug; 379(1):32-9. PubMed ID: 18482572
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Refolding and purification of recombinant L-asparaginase from inclusion bodies of E. coli into active tetrameric protein.
    Upadhyay AK; Singh A; Mukherjee KJ; Panda AK
    Front Microbiol; 2014; 5():486. PubMed ID: 25309524
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Strategic optimization of conditions for the solubilization of GST-tagged amphipathic helix-containing ciliary proteins overexpressed as inclusion bodies in E. coli.
    Shendge AA; D'Souza JS
    Microb Cell Fact; 2022 Dec; 21(1):258. PubMed ID: 36510188
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Recombinant murine growth hormone from E. coli inclusion bodies: expression, high-pressure solubilization and refolding, and characterization of activity and structure.
    Fradkin AH; Boand CS; Eisenberg SP; Rosendahl MS; Randolph TW
    Biotechnol Prog; 2010; 26(3):743-9. PubMed ID: 20196161
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.