BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

216 related articles for article (PubMed ID: 35978548)

  • 1. Flexibility of flanking DNA is a key determinant of transcription factor affinity for the core motif.
    Ghoshdastidar D; Bansal M
    Biophys J; 2022 Oct; 121(20):3987-4000. PubMed ID: 35978548
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Flexibility and structure of flanking DNA impact transcription factor affinity for its core motif.
    Yella VR; Bhimsaria D; Ghoshdastidar D; Rodríguez-Martínez JA; Ansari AZ; Bansal M
    Nucleic Acids Res; 2018 Dec; 46(22):11883-11897. PubMed ID: 30395339
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Probing the role of the protonation state of a minor groove-linker histidine in Exd-Hox-DNA binding.
    Jiang Y; Chiu TP; Mitra R; Rohs R
    Biophys J; 2024 Jan; 123(2):248-259. PubMed ID: 38130056
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A widespread role of the motif environment in transcription factor binding across diverse protein families.
    Dror I; Golan T; Levy C; Rohs R; Mandel-Gutfreund Y
    Genome Res; 2015 Sep; 25(9):1268-80. PubMed ID: 26160164
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Molecular and structural considerations of TF-DNA binding for the generation of biologically meaningful and accurate phylogenetic footprinting analysis: the LysR-type transcriptional regulator family as a study model.
    Oliver P; Peralta-Gil M; Tabche ML; Merino E
    BMC Genomics; 2016 Aug; 17(1):686. PubMed ID: 27567672
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Enhancers display constrained sequence flexibility and context-specific modulation of motif function.
    Reiter F; de Almeida BP; Stark A
    Genome Res; 2023 Mar; 33(3):346-358. PubMed ID: 36941077
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Sequence-Specific Structural Features and Solvation Properties of Transcription Factor Binding DNA Motifs: Insights from Molecular Dynamics Simulation.
    Patra P; Gao YQ
    J Phys Chem B; 2022 Nov; 126(45):9187-9206. PubMed ID: 36322688
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A biophysical model for analysis of transcription factor interaction and binding site arrangement from genome-wide binding data.
    He X; Chen CC; Hong F; Fang F; Sinha S; Ng HH; Zhong S
    PLoS One; 2009 Dec; 4(12):e8155. PubMed ID: 19956545
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A Conformational Switch in the Zinc Finger Protein Kaiso Mediates Differential Readout of Specific and Methylated DNA Sequences.
    Nikolova EN; Stanfield RL; Dyson HJ; Wright PE
    Biochemistry; 2020 May; 59(20):1909-1926. PubMed ID: 32352758
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Transcription factor family-specific DNA shape readout revealed by quantitative specificity models.
    Yang L; Orenstein Y; Jolma A; Yin Y; Taipale J; Shamir R; Rohs R
    Mol Syst Biol; 2017 Feb; 13(2):910. PubMed ID: 28167566
    [TBL] [Abstract][Full Text] [Related]  

  • 11. High-throughput data and modeling reveal insights into the mechanisms of cooperative DNA-binding by transcription factor proteins.
    Martin V; Zhuang F; Zhang Y; Pinheiro K; Gordân R
    Nucleic Acids Res; 2023 Nov; 51(21):11600-11612. PubMed ID: 37889068
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Quantitative modeling of transcription factor binding specificities using DNA shape.
    Zhou T; Shen N; Yang L; Abe N; Horton J; Mann RS; Bussemaker HJ; Gordân R; Rohs R
    Proc Natl Acad Sci U S A; 2015 Apr; 112(15):4654-9. PubMed ID: 25775564
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Sequence-specific dynamics of DNA response elements and their flanking sites regulate the recognition by AP-1 transcription factors.
    Hörberg J; Moreau K; Tamás MJ; Reymer A
    Nucleic Acids Res; 2021 Sep; 49(16):9280-9293. PubMed ID: 34387667
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Nonconsensus Protein Binding to Repetitive DNA Sequence Elements Significantly Affects Eukaryotic Genomes.
    Afek A; Cohen H; Barber-Zucker S; Gordân R; Lukatsky DB
    PLoS Comput Biol; 2015 Aug; 11(8):e1004429. PubMed ID: 26285121
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Single-molecule DNA unzipping reveals asymmetric modulation of a transcription factor by its binding site sequence and context.
    Rudnizky S; Khamis H; Malik O; Squires AH; Meller A; Melamed P; Kaplan A
    Nucleic Acids Res; 2018 Feb; 46(3):1513-1524. PubMed ID: 29253225
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Characterization of sequence determinants of enhancer function using natural genetic variation.
    Yang MG; Ling E; Cowley CJ; Greenberg ME; Vierbuchen T
    Elife; 2022 Aug; 11():. PubMed ID: 36043696
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Unraveling determinants of transcription factor binding outside the core binding site.
    Levo M; Zalckvar E; Sharon E; Dantas Machado AC; Kalma Y; Lotam-Pompan M; Weinberger A; Yakhini Z; Rohs R; Segal E
    Genome Res; 2015 Jul; 25(7):1018-29. PubMed ID: 25762553
    [TBL] [Abstract][Full Text] [Related]  

  • 18. DNA structural properties of DNA binding sites for 21 transcription factors in the mycobacterial genome.
    Dey U; Olymon K; Banik A; Abbas E; Yella VR; Kumar A
    Front Cell Infect Microbiol; 2023; 13():1147544. PubMed ID: 37396305
    [No Abstract]   [Full Text] [Related]  

  • 19. DNase footprint signatures are dictated by factor dynamics and DNA sequence.
    Sung MH; Guertin MJ; Baek S; Hager GL
    Mol Cell; 2014 Oct; 56(2):275-285. PubMed ID: 25242143
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Sequence features of DNA binding sites reveal structural class of associated transcription factor.
    Narlikar L; Hartemink AJ
    Bioinformatics; 2006 Jan; 22(2):157-63. PubMed ID: 16267080
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.