BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

219 related articles for article (PubMed ID: 35978548)

  • 21. Pbx-1 Hox heterodimers bind DNA on inseparable half-sites that permit intrinsic DNA binding specificity of the Hox partner at nucleotides 3' to a TAAT motif.
    Knoepfler PS; Lu Q; Kamps MP
    Nucleic Acids Res; 1996 Jun; 24(12):2288-94. PubMed ID: 8710498
    [TBL] [Abstract][Full Text] [Related]  

  • 22. How motif environment influences transcription factor search dynamics: Finding a needle in a haystack.
    Dror I; Rohs R; Mandel-Gutfreund Y
    Bioessays; 2016 Jul; 38(7):605-12. PubMed ID: 27192961
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Predicting conformational ensembles and genome-wide transcription factor binding sites from DNA sequences.
    Andrabi M; Hutchins AP; Miranda-Saavedra D; Kono H; Nussinov R; Mizuguchi K; Ahmad S
    Sci Rep; 2017 Jun; 7(1):4071. PubMed ID: 28642456
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Mechanism of cognate sequence discrimination by the ETS-family transcription factor ETS-1.
    Huang K; Xhani S; Albrecht AV; Ha VLT; Esaki S; Poon GMK
    J Biol Chem; 2019 Jun; 294(25):9666-9678. PubMed ID: 31048376
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Binding of transcription factor GabR to DNA requires recognition of DNA shape at a location distinct from its cognate binding site.
    Al-Zyoud WA; Hynson RM; Ganuelas LA; Coster AC; Duff AP; Baker MA; Stewart AG; Giannoulatou E; Ho JW; Gaus K; Liu D; Lee LK; Böcking T
    Nucleic Acids Res; 2016 Feb; 44(3):1411-20. PubMed ID: 26681693
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Context-Dependent Gene Regulation by Homeodomain Transcription Factor Complexes Revealed by Shape-Readout Deficient Proteins.
    Kribelbauer JF; Loker RE; Feng S; Rastogi C; Abe N; Rube HT; Bussemaker HJ; Mann RS
    Mol Cell; 2020 Apr; 78(1):152-167.e11. PubMed ID: 32053778
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Comprehensive, high-resolution binding energy landscapes reveal context dependencies of transcription factor binding.
    Le DD; Shimko TC; Aditham AK; Keys AM; Longwell SA; Orenstein Y; Fordyce PM
    Proc Natl Acad Sci U S A; 2018 Apr; 115(16):E3702-E3711. PubMed ID: 29588420
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Flanking sequence context-dependent transcription factor binding in early Drosophila development.
    Stringham JL; Brown AS; Drewell RA; Dresch JM
    BMC Bioinformatics; 2013 Oct; 14():298. PubMed ID: 24093548
    [TBL] [Abstract][Full Text] [Related]  

  • 29. DNA Sequence Determinants Controlling Affinity, Stability and Shape of DNA Complexes Bound by the Nucleoid Protein Fis.
    Hancock SP; Stella S; Cascio D; Johnson RC
    PLoS One; 2016; 11(3):e0150189. PubMed ID: 26959646
    [TBL] [Abstract][Full Text] [Related]  

  • 30. TFBSshape: a motif database for DNA shape features of transcription factor binding sites.
    Yang L; Zhou T; Dror I; Mathelier A; Wasserman WW; Gordân R; Rohs R
    Nucleic Acids Res; 2014 Jan; 42(Database issue):D148-55. PubMed ID: 24214955
    [TBL] [Abstract][Full Text] [Related]  

  • 31. DNA-dependent formation of transcription factor pairs alters their binding specificity.
    Jolma A; Yin Y; Nitta KR; Dave K; Popov A; Taipale M; Enge M; Kivioja T; Morgunova E; Taipale J
    Nature; 2015 Nov; 527(7578):384-8. PubMed ID: 26550823
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A DNA shape-based regulatory score improves position-weight matrix-based recognition of transcription factor binding sites.
    Yang J; Ramsey SA
    Bioinformatics; 2015 Nov; 31(21):3445-50. PubMed ID: 26130577
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The influence of transcription factor competition on the relationship between occupancy and affinity.
    Zabet NR; Foy R; Adryan B
    PLoS One; 2013; 8(9):e73714. PubMed ID: 24086290
    [TBL] [Abstract][Full Text] [Related]  

  • 34. DNA Shape Features Improve Transcription Factor Binding Site Predictions In Vivo.
    Mathelier A; Xin B; Chiu TP; Yang L; Rohs R; Wasserman WW
    Cell Syst; 2016 Sep; 3(3):278-286.e4. PubMed ID: 27546793
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Discovering epistatic feature interactions from neural network models of regulatory DNA sequences.
    Greenside P; Shimko T; Fordyce P; Kundaje A
    Bioinformatics; 2018 Sep; 34(17):i629-i637. PubMed ID: 30423062
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Covariation between homeodomain transcription factors and the shape of their DNA binding sites.
    Dror I; Zhou T; Mandel-Gutfreund Y; Rohs R
    Nucleic Acids Res; 2014 Jan; 42(1):430-41. PubMed ID: 24078250
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Synthetic and genomic regulatory elements reveal aspects of
    King DM; Hong CKY; Shepherdson JL; Granas DM; Maricque BB; Cohen BA
    Elife; 2020 Feb; 9():. PubMed ID: 32043966
    [TBL] [Abstract][Full Text] [Related]  

  • 38. High-Throughput Affinity Measurements of Transcription Factor and DNA Mutations Reveal Affinity and Specificity Determinants.
    Aditham AK; Markin CJ; Mokhtari DA; DelRosso N; Fordyce PM
    Cell Syst; 2021 Feb; 12(2):112-127.e11. PubMed ID: 33340452
    [TBL] [Abstract][Full Text] [Related]  

  • 39. An equilibrium partitioning model connecting gene expression and cis-motif content.
    Mellor J; DeLisi C
    Bioinformatics; 2006 Jul; 22(14):e368-74. PubMed ID: 16873495
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Discerning the Role of DNA Sequence, Shape, and Flexibility in Recognition by
    Murthy S; Dey U; Olymon K; Abbas E; Yella VR; Kumar A
    ACS Chem Biol; 2024 Jun; ():. PubMed ID: 38902964
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.