These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

152 related articles for article (PubMed ID: 35978747)

  • 1. Evaluating Visual Photoplethysmography Method.
    Talukdar D; de Deus LF; Sehgal N
    Cureus; 2022 Jul; 14(7):e26871. PubMed ID: 35978747
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Evaluation of a Camera-Based Monitoring Solution Against Regulated Medical Devices to Measure Heart Rate, Respiratory Rate, Oxygen Saturation, and Blood Pressure.
    Talukdar D; De Deus LF; Sehgal N
    Cureus; 2022 Nov; 14(11):e31649. PubMed ID: 36540478
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Pulse Rate Variability Analysis Using Remote Photoplethysmography Signals.
    Yu SG; Kim SE; Kim NH; Suh KH; Lee EC
    Sensors (Basel); 2021 Sep; 21(18):. PubMed ID: 34577448
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Robust Heart Rate Variability Measurement from Facial Videos.
    Odinaev I; Wong KL; Chin JW; Goyal R; Chan TT; So RHY
    Bioengineering (Basel); 2023 Jul; 10(7):. PubMed ID: 37508878
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Evaluation of biases in remote photoplethysmography methods.
    Dasari A; Prakash SKA; Jeni LA; Tucker CS
    NPJ Digit Med; 2021 Jun; 4(1):91. PubMed ID: 34083724
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Evaluation of Remote Photoplethysmography Measurement Conditions toward Telemedicine Applications.
    Tohma A; Nishikawa M; Hashimoto T; Yamazaki Y; Sun G
    Sensors (Basel); 2021 Dec; 21(24):. PubMed ID: 34960451
    [TBL] [Abstract][Full Text] [Related]  

  • 7. PulseGAN: Learning to Generate Realistic Pulse Waveforms in Remote Photoplethysmography.
    Song R; Chen H; Cheng J; Li C; Liu Y; Chen X
    IEEE J Biomed Health Inform; 2021 May; 25(5):1373-1384. PubMed ID: 33434140
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Contactless Blood Pressure Measurement Via Remote Photoplethysmography With Synthetic Data Generation Using Generative Adversarial Networks.
    Wu BF; Chiu LW; Wu YC; Lai CC; Cheng HM; Chu PH
    IEEE J Biomed Health Inform; 2024 Feb; 28(2):621-632. PubMed ID: 37037253
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Enhanced Contactless Heart Rate Monitoring Using Camera with Motion Artifact Removal During Physical Activities.
    Vatanparvar K; Li J; Gwak M; Zhu L; Kuang J; Gao A
    Annu Int Conf IEEE Eng Med Biol Soc; 2023 Jul; 2023():1-5. PubMed ID: 38082654
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Video-Based Pulse Rate Variability Measurement Using Periodic Variance Maximization and Adaptive Two-Window Peak Detection.
    Li P; Benezeth Y; Macwan R; Nakamura K; Gomez R; Li C; Yang F
    Sensors (Basel); 2020 May; 20(10):. PubMed ID: 32408526
    [TBL] [Abstract][Full Text] [Related]  

  • 11. GRGB rPPG: An Efficient Low-Complexity Remote Photoplethysmography-Based Algorithm for Heart Rate Estimation.
    Haugg F; Elgendi M; Menon C
    Bioengineering (Basel); 2023 Feb; 10(2):. PubMed ID: 36829737
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Optimizing Estimates of Instantaneous Heart Rate from Pulse Wave Signals with the Synchrosqueezing Transform.
    Wu HT; Lewis GF; Davila MI; Daubechies I; Porges SW
    Methods Inf Med; 2016 Oct; 55(5):463-472. PubMed ID: 27626806
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The PhysioCam: A Novel Non-Contact Sensor to Measure Heart Rate Variability in Clinical and Field Applications.
    Davila MI; Lewis GF; Porges SW
    Front Public Health; 2017; 5():300. PubMed ID: 29214150
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Camera-based Cardiovascular Screening based on Heart Rate and Its Variability In Pre- and Post-Exercise Conditions.
    Tan C; Xiao C; Wang W
    Annu Int Conf IEEE Eng Med Biol Soc; 2023 Jul; 2023():1-5. PubMed ID: 38083672
    [TBL] [Abstract][Full Text] [Related]  

  • 15. DiffPhys: Enhancing Signal-to-Noise Ratio in Remote Photoplethysmography Signal Using a Diffusion Model Approach.
    Chen S; Wong KL; Chin JW; Chan TT; So RHY
    Bioengineering (Basel); 2024 Jul; 11(8):. PubMed ID: 39199701
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Exploiting spatial redundancy of image sensor for motion robust rPPG.
    Wang W; Stuijk S; de Haan G
    IEEE Trans Biomed Eng; 2015 Feb; 62(2):415-25. PubMed ID: 25216474
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fusion Method to Estimate Heart Rate from Facial Videos Based on RPPG and RBCG.
    Lee H; Cho A; Whang M
    Sensors (Basel); 2021 Oct; 21(20):. PubMed ID: 34695976
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dynamic Region of Interest Selection in Remote Photoplethysmography: Proof-of-Concept Study.
    Kiddle A; Barham H; Wegerif S; Petronzio C
    JMIR Form Res; 2023 Mar; 7():e44575. PubMed ID: 36995742
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A supervised learning approach for the robust detection of heart beat in plethysmographic data.
    Grisan E; Cantisani G; Tarroni G; Seung Keun Yoon ; Rossi M
    Annu Int Conf IEEE Eng Med Biol Soc; 2015 Aug; 2015():5825-8. PubMed ID: 26737616
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of illuminance intensity on the green channel of remote photoplethysmography (rPPG) signals.
    Guler S; Ozturk O; Golparvar A; Dogan H; Yapici MK
    Phys Eng Sci Med; 2022 Dec; 45(4):1317-1323. PubMed ID: 36036875
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.