These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

150 related articles for article (PubMed ID: 35978855)

  • 21. Automatic stent reconstruction in optical coherence tomography based on a deep convolutional model.
    Wu P; Gutiérrez-Chico JL; Tauzin H; Yang W; Li Y; Yu W; Chu M; Guillon B; Bai J; Meneveau N; Wijns W; Tu S
    Biomed Opt Express; 2020 Jun; 11(6):3374-3394. PubMed ID: 32637261
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Type E coronary artery dissection caused by intravascular lithotripsy balloon rupture; vessel anatomy and characteristics in a lithoplasty complication case as detailed by optical coherence tomography: a case report.
    Lee TJ; Wan Rahimi WFB; Low MY; Nurruddin AA
    Eur Heart J Case Rep; 2021 Dec; 5(12):ytab432. PubMed ID: 34993399
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Simulation-Driven Machine Learning for Predicting Stent Expansion in Calcified Coronary Artery.
    Dong P; Ye G; Kaya M; Gu L
    Appl Sci (Basel); 2020 Sep; 10(17):. PubMed ID: 35903558
    [TBL] [Abstract][Full Text] [Related]  

  • 24. 3D registration of intravascular optical coherence tomography and cryo-image volumes for microscopic-resolution validation.
    Prabhu D; Mehanna E; Gargesha M; Wen D; Brandt E; van Ditzhuijzen NS; Chamie D; Yamamoto H; Fujino Y; Farmazilian A; Patel J; Costa M; Bezerra HG; Wilson DL
    Proc SPIE Int Soc Opt Eng; 2016 Feb; 9788():. PubMed ID: 27162417
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Automated Segmentation of Microvessels in Intravascular OCT Images Using Deep Learning.
    Lee J; Kim JN; Gomez-Perez L; Gharaibeh Y; Motairek I; Pereira GTR; Zimin VN; Dallan LAP; Hoori A; Al-Kindi S; Guagliumi G; Bezerra HG; Wilson DL
    Bioengineering (Basel); 2022 Nov; 9(11):. PubMed ID: 36354559
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A three-dimensional quantification of calcified and non-calcified plaques in coronary arteries based on computed tomography coronary angiography images: Comparison with expert's annotations and virtual histology intravascular ultrasound.
    Kigka VI; Sakellarios A; Kyriakidis S; Rigas G; Athanasiou L; Siogkas P; Tsompou P; Loggitsi D; Benz DC; Buechel R; Lemos PA; Pelosi G; Michalis LK; Fotiadis DI
    Comput Biol Med; 2019 Oct; 113():103409. PubMed ID: 31480007
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Automated tissue characterization of in vivo atherosclerotic plaques by intravascular optical coherence tomography images.
    Ughi GJ; Adriaenssens T; Sinnaeve P; Desmet W; D'hooge J
    Biomed Opt Express; 2013 Jul; 4(7):1014-30. PubMed ID: 23847728
    [TBL] [Abstract][Full Text] [Related]  

  • 28. [Progress of quantitative intravascular optical coherence tomography].
    Yang F; Sun Z
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2020 Apr; 37(2):358-364. PubMed ID: 32329290
    [TBL] [Abstract][Full Text] [Related]  

  • 29. OCT-BASED THREE DIMENSIONAL MODELING OF STENT DEPLOYMENT.
    Dong P; Prabhu D; Wilson DL; Bezerra HG; Gu L
    Int Mech Eng Congress Expo; 2017 Nov; 3():. PubMed ID: 29607444
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Plaque modification of severely calcified coronary lesions by scoring balloon angioplasty using Lacrosse non-slip element: insights from an optical coherence tomography evaluation.
    Sugawara Y; Ueda T; Soeda T; Watanabe M; Okura H; Saito Y
    Cardiovasc Interv Ther; 2019 Jul; 34(3):242-248. PubMed ID: 30341585
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Automatic stent strut detection in intravascular optical coherence tomographic pullback runs.
    Wang A; Eggermont J; Dekker N; Garcia-Garcia HM; Pawar R; Reiber JH; Dijkstra J
    Int J Cardiovasc Imaging; 2013 Jan; 29(1):29-38. PubMed ID: 22618433
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Coronary artery segmentation from intravascular optical coherence tomography using deep capsules.
    Balaji A; Kelsey LJ; Majeed K; Schultz CJ; Doyle BJ
    Artif Intell Med; 2021 Jun; 116():102072. PubMed ID: 34020750
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Impact of atherosclerotic plaque components and their distribution on stent deployment: an intravascular-ultrasound virtual histology observational study.
    Vavuranakis M; Papaioannou TG; Katsarou OA; Vrachatis DA; Sanidas EA; Siasos G; Kalogeras KI; Schizas D; Stefanadis CI; Tousoulis D
    Minerva Cardioangiol; 2016 Oct; 64(5):507-16. PubMed ID: 26080685
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Predictors of stent strut malapposition in calcified vessels using frequency-domain optical coherence tomography.
    Lindsay AC; Paulo M; Kadriye K; Tejeiro R; Alegría-Barrero E; Chan PH; Foin N; Syrseloudis D; Di Mario C
    J Invasive Cardiol; 2013 Sep; 25(9):429-34. PubMed ID: 23995714
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Automatic A-line coronary plaque classification using combined deep learning and textural features in intravascular OCT images.
    Lee J; Kolluru C; Gharaibeh Y; Prabhu D; Zimin VN; Bezerra H; Wilson D
    Proc SPIE Int Soc Opt Eng; 2020 Feb; 11315():. PubMed ID: 35291576
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Aggressive plaque modification with rotational atherectomy and cutting balloon for optimal stent expansion in calcified lesions.
    Tang Z; Bai J; Su SP; Lee PW; Peng L; Zhang T; Sun T; Nong JG; Li TD; Wang Y
    J Geriatr Cardiol; 2016 Dec; 13(12):984-991. PubMed ID: 28321242
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Three-dimensional spatial reconstruction of coronary arteries based on fusion of intravascular optical coherence tomography and coronary angiography.
    Zhu Y; Zhu F; Ding Z; Tao K; Lai T; Kuang H; Hua P; Shang M; Hu J; Yu Y; Liu T
    J Biophotonics; 2021 Mar; 14(3):e202000370. PubMed ID: 33247508
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Therapeutic Approach to Calcified Coronary Lesions: Disruptive Technologies.
    Karimi Galougahi K; Shlofmitz E; Jeremias A; Gogia S; Kirtane AJ; Hill JM; Karmpaliotis D; Mintz GS; Maehara A; Stone GW; Shlofmitz RA; Ali ZA
    Curr Cardiol Rep; 2021 Mar; 23(4):33. PubMed ID: 33666772
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Optical frequency-domain imaging findings to predict good stent expansion after rotational atherectomy for severely calcified coronary lesions.
    Kobayashi N; Ito Y; Yamawaki M; Araki M; Sakai T; Sakamoto Y; Mori S; Tsutsumi M; Nauchi M; Honda Y; Tokuda T; Makino K; Shirai S; Hirano K
    Int J Cardiovasc Imaging; 2018 Jun; 34(6):867-874. PubMed ID: 29318407
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Three-dimensional registration of intravascular optical coherence tomography and cryo-image volumes for microscopic-resolution validation.
    Prabhu D; Mehanna E; Gargesha M; Brandt E; Wen D; van Ditzhuijzen NS; Chamie D; Yamamoto H; Fujino Y; Alian A; Patel J; Costa M; Bezerra HG; Wilson DL
    J Med Imaging (Bellingham); 2016 Apr; 3(2):026004. PubMed ID: 27429997
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.