BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

172 related articles for article (PubMed ID: 35979091)

  • 1. The temperature-dependent expression of type II secretion system controls extracellular product secretion and virulence in mesophilic
    Yi X; Chen Y; Cai H; Wang J; Zhang Y; Zhu Z; Lin M; Qin Y; Jiang X; Xu X
    Front Cell Infect Microbiol; 2022; 12():945000. PubMed ID: 35979091
    [No Abstract]   [Full Text] [Related]  

  • 2. Enhanced Hemolytic Activity of Mesophilic
    Chen Y; Wang J; Cai H; Lin M; Zhang Y; Huang L
    Microorganisms; 2022 Oct; 10(10):. PubMed ID: 36296309
    [No Abstract]   [Full Text] [Related]  

  • 3. Virulence regulation of Zn
    Wang J; Xiu L; Qiao Y; Zhang Y
    Front Vet Sci; 2023; 10():1172123. PubMed ID: 37065252
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The immune response of a warm water fish orange-spotted grouper (Epinephelus coioides) infected with a typical cold water bacterial pathogen Aeromonas salmonicida is AhR dependent.
    Huang L; Qi W; Zuo Y; Alias SA; Xu W
    Dev Comp Immunol; 2020 Dec; 113():103779. PubMed ID: 32735958
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of the Type VI Secretion System Secreted Protein Hcp on the Virulence of
    Cai H; Yu J; Qiao Y; Ma Y; Zheng J; Lin M; Yan Q; Huang L
    Microorganisms; 2022 Nov; 10(12):. PubMed ID: 36557560
    [No Abstract]   [Full Text] [Related]  

  • 6. Isolation and characterization of bifunctional Escherichia coli TatA mutant proteins that allow efficient tat-dependent protein translocation in the absence of TatB.
    Blaudeck N; Kreutzenbeck P; Müller M; Sprenger GA; Freudl R
    J Biol Chem; 2005 Feb; 280(5):3426-32. PubMed ID: 15557327
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Twin-arginine translocation system in Helicobacter pylori: TatC, but not TatB, is essential for viability.
    Benoit SL; Maier RJ
    mBio; 2014 Jan; 5(1):e01016-13. PubMed ID: 24449753
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Location and mobility of twin arginine translocase subunits in the Escherichia coli plasma membrane.
    Ray N; Nenninger A; Mullineaux CW; Robinson C
    J Biol Chem; 2005 May; 280(18):17961-8. PubMed ID: 15728576
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A TatABC-type Tat translocase is required for unimpaired aerobic growth of Corynebacterium glutamicum ATCC13032.
    Oertel D; Schmitz S; Freudl R
    PLoS One; 2015; 10(4):e0123413. PubMed ID: 25837592
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Twin arginine translocation (Tat)-dependent export in the apparent absence of TatABC or TatA complexes using modified Escherichia coli TatA subunits that substitute for TatB.
    Barrett CM; Freudl R; Robinson C
    J Biol Chem; 2007 Dec; 282(50):36206-13. PubMed ID: 17881358
    [TBL] [Abstract][Full Text] [Related]  

  • 11. TatB and TatC form a functional and structural unit of the twin-arginine translocase from Escherichia coli.
    Bolhuis A; Mathers JE; Thomas JD; Barrett CM; Robinson C
    J Biol Chem; 2001 Jun; 276(23):20213-9. PubMed ID: 11279240
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Escherichia coli TatA and TatB proteins have N-out, C-in topology in intact cells.
    Koch S; Fritsch MJ; Buchanan G; Palmer T
    J Biol Chem; 2012 Apr; 287(18):14420-31. PubMed ID: 22399293
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Surface-exposed domains of TatB involved in the structural and functional assembly of the Tat translocase in
    Fröbel J; Blümmel AS; Drepper F; Warscheid B; Müller M
    J Biol Chem; 2019 Sep; 294(38):13902-13914. PubMed ID: 31341014
    [TBL] [Abstract][Full Text] [Related]  

  • 14. TatBC, TatB, and TatC form structurally autonomous units within the twin arginine protein transport system of Escherichia coli.
    Orriss GL; Tarry MJ; Ize B; Sargent F; Lea SM; Palmer T; Berks BC
    FEBS Lett; 2007 Aug; 581(21):4091-7. PubMed ID: 17686475
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The entire N-terminal half of TatC is involved in twin-arginine precursor binding.
    Holzapfel E; Eisner G; Alami M; Barrett CM; Buchanan G; Lüke I; Betton JM; Robinson C; Palmer T; Moser M; Müller M
    Biochemistry; 2007 Mar; 46(10):2892-8. PubMed ID: 17300178
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Sequence and phylogenetic analyses of the twin-arginine targeting (Tat) protein export system.
    Yen MR; Tseng YH; Nguyen EH; Wu LF; Saier MH
    Arch Microbiol; 2002 Jun; 177(6):441-50. PubMed ID: 12029389
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The TatBC complex formation suppresses a modular TatB-multimerization in Escherichia coli.
    Behrendt J; Lindenstrauss U; Brüser T
    FEBS Lett; 2007 Aug; 581(21):4085-90. PubMed ID: 17678896
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mutations in subunits of the Escherichia coli twin-arginine translocase block function via differing effects on translocation activity or tat complex structure.
    Barrett CM; Mangels D; Robinson C
    J Mol Biol; 2005 Mar; 347(2):453-63. PubMed ID: 15740752
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Functional analysis of TatA and TatB in Streptomyces lividans.
    De Keersmaeker S; Van Mellaert L; Lammertyn E; Vrancken K; Anné J; Geukens N
    Biochem Biophys Res Commun; 2005 Sep; 335(3):973-82. PubMed ID: 16111662
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Unanticipated functional diversity among the TatA-type components of the Tat protein translocase.
    Eimer E; Kao WC; Fröbel J; Blümmel AS; Hunte C; Müller M
    Sci Rep; 2018 Jan; 8(1):1326. PubMed ID: 29358647
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.