BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

204 related articles for article (PubMed ID: 35979494)

  • 1. Modulation of extracellular
    Palmieri D; Miccoli C; Notardonato I; Avino P; Lima G; De Curtis F; Ianiri G; Castoria R
    Front Microbiol; 2022; 13():973670. PubMed ID: 35979494
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Molecular Tools for the Yeast Papiliotrema terrestris LS28 and Identification of Yap1 as a Transcription Factor Involved in Biocontrol Activity.
    Castoria R; Miccoli C; Barone G; Palmieri D; De Curtis F; Lima G; Heitman J; Ianiri G
    Appl Environ Microbiol; 2021 Mar; 87(7):. PubMed ID: 33452020
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Biocontrol Agents Increase the Specific Rate of Patulin Production by
    Zheng X; Yang Q; Zhang X; Apaliya MT; Ianiri G; Zhang H; Castoria R
    Front Microbiol; 2017; 8():1240. PubMed ID: 28713362
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Lentinula edodes enhances the biocontrol activity of Cryptococcus laurentii against Penicillium expansum contamination and patulin production in apple fruits.
    Tolaini V; Zjalic S; Reverberi M; Fanelli C; Fabbri AA; Del Fiore A; De Rossi P; Ricelli A
    Int J Food Microbiol; 2010 Apr; 138(3):243-9. PubMed ID: 20206395
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Biocontrol activity and patulin-removal effects of Bacillus subtilis, Rhodobacter sphaeroides and Agrobacterium tumefaciens against Penicillium expansum.
    Wang Y; Yuan Y; Liu B; Zhang Z; Yue T
    J Appl Microbiol; 2016 Nov; 121(5):1384-1393. PubMed ID: 27328641
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Transcriptomic investigation of the interaction between a biocontrol yeast, Papiliotrema terrestris strain PT22AV, and the postharvest fungal pathogen Penicillium expansum on apple.
    Ianiri G; Barone G; Palmieri D; Quiquero M; Gaeta I; De Curtis F; Castoria R
    Commun Biol; 2024 Mar; 7(1):359. PubMed ID: 38519651
    [TBL] [Abstract][Full Text] [Related]  

  • 7. New Isolated
    Settier-Ramírez L; López-Carballo G; Hernández-Muñoz P; Fontana A; Strub C; Schorr-Galindo S
    Toxins (Basel); 2021 Jun; 13(6):. PubMed ID: 34199507
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of biocontrol agents Candida sake and Pantoea agglomerans on Penicillium expansum growth and patulin accumulation in apples.
    Morales H; Sanchis V; Usall J; Ramos AJ; Marín S
    Int J Food Microbiol; 2008 Feb; 122(1-2):61-7. PubMed ID: 18191492
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Acidification of apple and orange hosts by Penicillium digitatum and Penicillium expansum.
    Vilanova L; Viñas I; Torres R; Usall J; Buron-Moles G; Teixidó N
    Int J Food Microbiol; 2014 May; 178():39-49. PubMed ID: 24667317
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Histone H3K4 Methyltransferase PeSet1 Regulates Colonization, Patulin Biosynthesis, and Stress Responses of
    Xu X; Chen Y; Li B; Tian S
    Microbiol Spectr; 2023 Feb; 11(1):e0354522. PubMed ID: 36633412
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Native pears of Sardinia affect Penicillium expansum pathogenesis.
    Cubaiu L; Azara E; Ladu G; Venditti T; D'Hallewin G
    Commun Agric Appl Biol Sci; 2013; 78(3):573-7. PubMed ID: 25151833
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Apple Intrinsic Factors Modulating the Global Regulator, LaeA, the Patulin Gene Cluster and Patulin Accumulation During Fruit Colonization by
    Kumar D; Tannous J; Sionov E; Keller N; Prusky D
    Front Plant Sci; 2018; 9():1094. PubMed ID: 30100914
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ammonia activates pacC and patulin accumulation in an acidic environment during apple colonization by Penicillium expansum.
    Barad S; Espeso EA; Sherman A; Prusky D
    Mol Plant Pathol; 2016 Jun; 17(5):727-40. PubMed ID: 26420024
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Impact of the antifungal protein PgAFP on the proteome and patulin production of Penicillium expansum on apple-based medium.
    Delgado J; Ballester AR; González-Candelas L; Núñez F
    Int J Food Microbiol; 2022 Feb; 363():109511. PubMed ID: 34990884
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Penicillium expansum: biology, omics, and management tools for a global postharvest pathogen causing blue mould of pome fruit.
    Luciano-Rosario D; Keller NP; Jurick WM
    Mol Plant Pathol; 2020 Nov; 21(11):1391-1404. PubMed ID: 32969130
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of carbon, nitrogen and ambient pH on patulin production and related gene expression in Penicillium expansum.
    Zong Y; Li B; Tian S
    Int J Food Microbiol; 2015 Aug; 206():102-8. PubMed ID: 26001378
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Exploring the Biocontrol Capability of Non-Mycotoxigenic Strains of
    Llobregat B; González-Candelas L; Ballester AR
    Toxins (Basel); 2024 Jan; 16(1):. PubMed ID: 38251268
    [No Abstract]   [Full Text] [Related]  

  • 18. PeMetR-mediated sulfur assimilation is essential for virulence and patulin biosynthesis in Penicillium expansum.
    Chen Y; Zhang Z; Li B; Tian S
    Environ Microbiol; 2021 Sep; 23(9):5555-5568. PubMed ID: 34347341
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Patulin is a cultivar-dependent aggressiveness factor favouring the colonization of apples by Penicillium expansum.
    Snini SP; Tannous J; Heuillard P; Bailly S; Lippi Y; Zehraoui E; Barreau C; Oswald IP; Puel O
    Mol Plant Pathol; 2016 Aug; 17(6):920-30. PubMed ID: 26582186
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Bacterial Quorum-Quenching Lactonase Hydrolyzes Fungal Mycotoxin and Reduces Pathogenicity of
    Dor S; Prusky D; Afriat-Jurnou L
    J Fungi (Basel); 2021 Oct; 7(10):. PubMed ID: 34682247
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 11.