These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 35979759)

  • 1. Blue energy generation by the temperature-dependent properties in funnel-shaped soft nanochannels.
    Karimzadeh M; Khatibi M; Ashrafizadeh SN; Mondal PK
    Phys Chem Chem Phys; 2022 Aug; 24(34):20303-20317. PubMed ID: 35979759
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Tripling the reverse electrodialysis power generation in conical nanochannels utilizing soft surfaces.
    Khatibi M; Sadeghi A; Ashrafizadeh SN
    Phys Chem Chem Phys; 2021 Jan; 23(3):2211-2221. PubMed ID: 33439162
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Covering the conical nanochannels with dense polyelectrolyte layers significantly improves the ionic current rectification.
    Khatibi M; Ashrafizadeh SN; Sadeghi A
    Anal Chim Acta; 2020 Jul; 1122():48-60. PubMed ID: 32503743
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Layer-by-Layer Nanofluidic Membranes for Promoting Blue Energy Conversion.
    Khatibi M; Dartoomi H; Ashrafizadeh SN
    Langmuir; 2023 Sep; 39(38):13717-13734. PubMed ID: 37702658
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Influence of temperature gradients on charge transport in asymmetric nanochannels.
    Benneker AM; Wendt HD; Lammertink RGH; Wood JA
    Phys Chem Chem Phys; 2017 Oct; 19(41):28232-28238. PubMed ID: 29027561
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Highly Efficient Conversion of Salinity Difference to Electricity in Nanofluidic Channels Boosted by Variable Thickness Polyelectrolyte Coating.
    Nekoubin N; Sadeghi A; Chakraborty S
    Langmuir; 2024 May; 40(19):10171-10183. PubMed ID: 38698764
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Improved ionic current rectification utilizing cylindrical nanochannels coated with polyelectrolyte layers of non-uniform thickness.
    Nekoubin N; Hardt S; Sadeghi A
    Soft Matter; 2024 May; 20(17):3641-3652. PubMed ID: 38623003
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Nanofluidic Membranes to Address the Challenges of Salinity Gradient Energy Harvesting: Roles of Nanochannel Geometry and Bipolar Soft Layer.
    Dartoomi H; Khatibi M; Ashrafizadeh SN
    Langmuir; 2022 Aug; 38(33):10313-10330. PubMed ID: 35952366
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Smart nanochannels: tailoring ion transport properties through variation in nanochannel geometry.
    Heydari A; Khatibi M; Ashrafizadeh SN
    Phys Chem Chem Phys; 2023 Oct; 25(39):26716-26736. PubMed ID: 37779455
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Heat Transport of Electrokinetic Flow in Slit Soft Nanochannels.
    Wang Z; Jian Y
    Micromachines (Basel); 2019 Jan; 10(1):. PubMed ID: 30621067
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Active control of salinity-based power generation in nanopores using thermal and pH effects.
    Mai VP; Yang RJ
    RSC Adv; 2020 May; 10(32):18624-18631. PubMed ID: 35518343
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Asymmetric Electrokinetic Energy Conversion in Slip Conical Nanopores.
    Chang CC
    Nanomaterials (Basel); 2022 Mar; 12(7):. PubMed ID: 35407218
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Electrokinetic power generation in conical nanochannels: regulation effects due to conicity.
    Qian F; Zhang W; Huang D; Li W; Wang Q; Zhao C
    Phys Chem Chem Phys; 2020 Jan; 22(4):2386-2398. PubMed ID: 31938800
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Harvesting Enhanced Blue Energy in Charged Nanochannels Using Semidiluted Polyelectrolyte Solution.
    Mehta SK; Padhi P; Wongwises S; Mondal PK
    Langmuir; 2024 Sep; 40(35):18750-18759. PubMed ID: 39162365
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Salinity Gradient-Induced Power Generation in Nanochannels: The Role of pH-Sensitive Polyelectrolyte Layers.
    Mehta SK; Raj AR; Mondal PK
    Langmuir; 2023 Sep; 39(35):12302-12312. PubMed ID: 37471700
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Diffusioosmotic flows in slit nanochannels.
    Qian S; Das B; Luo X
    J Colloid Interface Sci; 2007 Nov; 315(2):721-30. PubMed ID: 17719599
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Influence of slip velocity at the core of a diffuse soft particle and ion partition effects on mobility.
    Kundu D; Bhattacharyya S
    Eur Phys J E Soft Matter; 2020 May; 43(5):27. PubMed ID: 32447590
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of fluid slippage on pressure-driven electrokinetic energy conversion in conical nanochannels.
    Qian F; Guo P; Zhang W; Wang Q; Zhao C
    Electrophoresis; 2022 Nov; 43(21-22):2062-2073. PubMed ID: 35621205
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Thermal transport characteristics of combined electroosmotic and pressure driven flow in soft nanofluidics.
    Matin MH; Ohshima H
    J Colloid Interface Sci; 2016 Aug; 476():167-176. PubMed ID: 27214147
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Temperature effects on the electrohydrodynamic and electrokinetic behaviour of ion-selective nanochannels.
    Wood JA; Benneker AM; Lammertink RG
    J Phys Condens Matter; 2016 Mar; 28(11):114002. PubMed ID: 26902841
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.