These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
114 related articles for article (PubMed ID: 35979954)
1. Markov state models elucidate the stability of DNA influenced by the chiral 5S-Tg base. Wang SD; Zhang RB; Eriksson LA Nucleic Acids Res; 2022 Sep; 50(16):9072-9082. PubMed ID: 35979954 [TBL] [Abstract][Full Text] [Related]
2. Dynamics of 5R-Tg Base Flipping in DNA Duplexes Based on Simulations─Agreement with Experiments and Beyond. Wang SD; Eriksson LA; Zhang RB J Chem Inf Model; 2022 Jan; 62(2):386-398. PubMed ID: 34994562 [TBL] [Abstract][Full Text] [Related]
3. Interconversion of the cis-5R,6S- and trans-5R,6R-thymine glycol lesions in duplex DNA. Brown KL; Adams T; Jasti VP; Basu AK; Stone MP J Am Chem Soc; 2008 Sep; 130(35):11701-10. PubMed ID: 18681438 [TBL] [Abstract][Full Text] [Related]
4. Binding of the human nucleotide excision repair proteins XPA and XPC/HR23B to the 5R-thymine glycol lesion and structure of the cis-(5R,6S) thymine glycol epimer in the 5'-GTgG-3' sequence: destabilization of two base pairs at the lesion site. Brown KL; Roginskaya M; Zou Y; Altamirano A; Basu AK; Stone MP Nucleic Acids Res; 2010 Jan; 38(2):428-40. PubMed ID: 19892827 [TBL] [Abstract][Full Text] [Related]
5. The cis-(5R,6S)-thymine glycol lesion occupies the wobble position when mismatched with deoxyguanosine in DNA. Brown KL; Basu AK; Stone MP Biochemistry; 2009 Oct; 48(41):9722-33. PubMed ID: 19772348 [TBL] [Abstract][Full Text] [Related]
6. Repair of thymine glycol by hNth1 and hNeil1 is modulated by base pairing and cis-trans epimerization. Ocampo-Hafalla MT; Altamirano A; Basu AK; Chan MK; Ocampo JE; Cummings A; Boorstein RJ; Cunningham RP; Teebor GW DNA Repair (Amst); 2006 Apr; 5(4):444-54. PubMed ID: 16446124 [TBL] [Abstract][Full Text] [Related]
7. Role of base flipping in specific recognition of damaged DNA by repair enzymes. Fuxreiter M; Luo N; Jedlovszky P; Simon I; Osman R J Mol Biol; 2002 Nov; 323(5):823-34. PubMed ID: 12417196 [TBL] [Abstract][Full Text] [Related]
8. Protein-facilitated base flipping in DNA by cytosine-5-methyltransferase. Huang N; Banavali NK; MacKerell AD Proc Natl Acad Sci U S A; 2003 Jan; 100(1):68-73. PubMed ID: 12506195 [TBL] [Abstract][Full Text] [Related]
9. Thymidine glycol: the effect on DNA molecular structure and enzymatic processing. Dolinnaya NG; Kubareva EA; Romanova EA; Trikin RM; Oretskaya TS Biochimie; 2013 Feb; 95(2):134-47. PubMed ID: 23000318 [TBL] [Abstract][Full Text] [Related]
10. Structures and energetics of base flipping of the thymine dimer depend on DNA sequence. O'Neil LL; Wiest O J Phys Chem B; 2008 Apr; 112(13):4113-22. PubMed ID: 18335922 [TBL] [Abstract][Full Text] [Related]
11. Free Energy Landscape and Conformational Kinetics of Hoogsteen Base Pairing in DNA vs. RNA. Ray D; Andricioaei I Biophys J; 2020 Oct; 119(8):1568-1579. PubMed ID: 32946766 [TBL] [Abstract][Full Text] [Related]
12. Free energy and structural pathways of base flipping in a DNA GCGC containing sequence. Banavali NK; MacKerell AD J Mol Biol; 2002 May; 319(1):141-60. PubMed ID: 12051942 [TBL] [Abstract][Full Text] [Related]
13. DNA base dimers are stabilized by hydrogen-bonding interactions including non-Watson-Crick pairing near graphite surfaces. Shankar A; Jagota A; Mittal J J Phys Chem B; 2012 Oct; 116(40):12088-94. PubMed ID: 22967176 [TBL] [Abstract][Full Text] [Related]
15. Linear free energy correlations for enzymatic base flipping: how do damaged base pairs facilitate specific recognition? Krosky DJ; Schwarz FP; Stivers JT Biochemistry; 2004 Apr; 43(14):4188-95. PubMed ID: 15065862 [TBL] [Abstract][Full Text] [Related]
16. Force-Field-Dependent DNA Breathing Dynamics: A Case Study of Hoogsteen Base Pairing in A6-DNA. Stone SE; Ray D; Andricioaei I J Chem Inf Model; 2022 Dec; 62(24):6749-6761. PubMed ID: 36049242 [TBL] [Abstract][Full Text] [Related]
17. The first example of a Hoogsteen base-paired DNA duplex in dynamic equilibrium with a Watson-Crick base-paired duplex--a structural (NMR), kinetic and thermodynamic study. Isaksson J; Zamaratski E; Maltseva TV; Agback P; Kumar A; Chattopadhyaya J J Biomol Struct Dyn; 2001 Jun; 18(6):783-806. PubMed ID: 11444368 [TBL] [Abstract][Full Text] [Related]
18. Dynamics and energetics of the base flipping conformation studied with base pair-mimic nucleosides. Nakano S; Oka H; Uotani Y; Uenishi K; Fujii M; Sugimoto N Biochemistry; 2009 Dec; 48(47):11304-11. PubMed ID: 19839646 [TBL] [Abstract][Full Text] [Related]
19. The origins of high-affinity enzyme binding to an extrahelical DNA base. Krosky DJ; Song F; Stivers JT Biochemistry; 2005 Apr; 44(16):5949-59. PubMed ID: 15835884 [TBL] [Abstract][Full Text] [Related]
20. Analyzing the relationship between single base flipping and strand slippage near DNA duplex termini. Banavali NK J Phys Chem B; 2013 Nov; 117(46):14320-8. PubMed ID: 24206351 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]