BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

169 related articles for article (PubMed ID: 35980118)

  • 41. An Atmospheric Water-Harvester with Ultrahigh Uptake-Release Efficiency at Low Humidity.
    Luo Q; Chen M; Yu D; Zhang T; Zhao J; Zhang L; Han X; Zhou M; Hou Y; Zheng Y
    ACS Nano; 2024 Jun; 18(22):14650-14660. PubMed ID: 38761383
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Integrated Solution for As(III) Contamination in Water Based on Crystalline Porous Organic Salts.
    Yang X; Guo Q; Liu X; Ma JX
    Adv Sci (Weinh); 2024 Jun; ():e2403539. PubMed ID: 38923305
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Materials Engineering for Atmospheric Water Harvesting: Progress and Perspectives.
    Lu H; Shi W; Guo Y; Guan W; Lei C; Yu G
    Adv Mater; 2022 Mar; 34(12):e2110079. PubMed ID: 35122451
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Polyzwitterionic Hydrogels for Efficient Atmospheric Water Harvesting.
    Lei C; Guo Y; Guan W; Lu H; Shi W; Yu G
    Angew Chem Int Ed Engl; 2022 Mar; 61(13):e202200271. PubMed ID: 35089612
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Towards a better understanding of atmospheric water harvesting (AWH) technology.
    Wang M; Liu E; Jin T; Zafar SU; Mei X; Fauconnier ML; De Clerck C
    Water Res; 2024 Feb; 250():121052. PubMed ID: 38171174
    [TBL] [Abstract][Full Text] [Related]  

  • 46. A Highly Stable Ortho-Ketoenamine Covalent Organic Framework with Balanced Hydrophilic and Hydrophobic Sites for Atmospheric Water Harvesting.
    Chen LH; Han WK; Yan X; Zhang J; Jiang Y; Gu ZG
    ChemSusChem; 2022 Dec; 15(24):e202201824. PubMed ID: 36215080
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Synthesis of Crystalline Porous Organic Salts with High Proton Conductivity.
    Xing G; Yan T; Das S; Ben T; Qiu S
    Angew Chem Int Ed Engl; 2018 May; 57(19):5345-5349. PubMed ID: 29532575
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Structure-Property Relationships of Hydrogel-based Atmospheric Water Harvesting Systems.
    Feng A; Shi Y; Onggowarsito C; Zhang XS; Mao S; Johir MAH; Fu Q; Nghiem LD
    ChemSusChem; 2024 Jun; 17(11):e202301905. PubMed ID: 38268017
    [TBL] [Abstract][Full Text] [Related]  

  • 49. An atmospheric water harvesting system based on the "Optimal Harvesting Window" design for worldwide water production.
    Li Q; Shao Z; Zou Q; Pan Q; Zhao Y; Feng Y; Wang W; Wang R; Ge T
    Sci Bull (Beijing); 2024 May; 69(10):1437-1447. PubMed ID: 38531718
    [TBL] [Abstract][Full Text] [Related]  

  • 50. A Sulfonated Covalent Organic Framework for Atmospheric Water Harvesting.
    Schweng P; Li C; Guggenberger P; Kleitz F; Woodward RT
    ChemSusChem; 2024 May; ():e202301906. PubMed ID: 38757750
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Hydratable Core-Shell Polymer Networks for Atmospheric Water Harvesting Powered by Sunlight.
    Maity D; Teixeira AP; Fussenegger M
    Small; 2023 Nov; 19(47):e2301427. PubMed ID: 37525326
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Colossal Negative Linear Compressibility in Porous Organic Salts.
    Zhao Y; Fan C; Pei C; Geng X; Xing G; Ben T; Qiu S
    J Am Chem Soc; 2020 Feb; 142(7):3593-3599. PubMed ID: 31967808
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Manipulating Pore Topology and Functionality to Promote Fluorocarbon-Based Adsorption Cooling.
    Barpaga D; Zheng J; McGrail BP; Motkuri RK
    Acc Chem Res; 2022 Mar; 55(5):649-659. PubMed ID: 34958192
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Atmospheric Water Harvesting by Large-Scale Radiative Cooling Cellulose-Based Fabric.
    Zhang Y; Zhu W; Zhang C; Peoples J; Li X; Felicelli AL; Shan X; Warsinger DM; Borca-Tasciuc T; Ruan X; Li T
    Nano Lett; 2022 Apr; 22(7):2618-2626. PubMed ID: 35364813
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Pathways to Energy-efficient Water Production from the Atmosphere.
    Feng Y; Wang R; Ge T
    Adv Sci (Weinh); 2022 Dec; 9(36):e2204508. PubMed ID: 36285671
    [TBL] [Abstract][Full Text] [Related]  

  • 56. An overview of atmospheric water harvesting methods, the inevitable path of the future in water supply.
    Ahrestani Z; Sadeghzadeh S; Motejadded Emrooz HB
    RSC Adv; 2023 Mar; 13(15):10273-10307. PubMed ID: 37034449
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Sorbents for Atmospheric Water Harvesting: From Design Principles to Applications.
    Shi W; Guan W; Lei C; Yu G
    Angew Chem Int Ed Engl; 2022 Oct; 61(43):e202211267. PubMed ID: 35960199
    [TBL] [Abstract][Full Text] [Related]  

  • 58. A Roadmap to Sorption-Based Atmospheric Water Harvesting: From Molecular Sorption Mechanism to Sorbent Design and System Optimization.
    Yang K; Pan T; Lei Q; Dong X; Cheng Q; Han Y
    Environ Sci Technol; 2021 May; 55(10):6542-6560. PubMed ID: 33914502
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Macro-porous structured aerogel with enhanced ab/desorption kinetics for sorption-based atmospheric water harvesting.
    Deng K; Zhu M; Chen J; Wang Z; Yang H; Xu H; He G; Zhan Y; Gu S; Liu X; Shang B
    J Colloid Interface Sci; 2024 Feb; 656():466-473. PubMed ID: 38007938
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Performance characterization and application of composite adsorbent LiCl@ACFF for moisture harvesting.
    Liu XY; Wang WW; Xie ST; Pan QW
    Sci Rep; 2021 Jul; 11(1):14412. PubMed ID: 34257398
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.