These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
191 related articles for article (PubMed ID: 35980155)
1. Omnibus and robust deconvolution scheme for bulk RNA sequencing data integrating multiple single-cell reference sets and prior biological knowledge. Chen C; Leung YY; Ionita M; Wang LS; Li M Bioinformatics; 2022 Sep; 38(19):4530-4536. PubMed ID: 35980155 [TBL] [Abstract][Full Text] [Related]
2. MuSiC2: cell-type deconvolution for multi-condition bulk RNA-seq data. Fan J; Lyu Y; Zhang Q; Wang X; Li M; Xiao R Brief Bioinform; 2022 Nov; 23(6):. PubMed ID: 36208175 [TBL] [Abstract][Full Text] [Related]
3. SimBu: bias-aware simulation of bulk RNA-seq data with variable cell-type composition. Dietrich A; Sturm G; Merotto L; Marini F; Finotello F; List M Bioinformatics; 2022 Sep; 38(Suppl_2):ii141-ii147. PubMed ID: 36124800 [TBL] [Abstract][Full Text] [Related]
4. Semi-deconvolution of bulk and single-cell RNA-seq data with application to metastatic progression in breast cancer. Lei H; Guo XA; Tao Y; Ding K; Fu X; Oesterreich S; Lee AV; Schwartz R Bioinformatics; 2022 Jun; 38(Suppl 1):i386-i394. PubMed ID: 35758822 [TBL] [Abstract][Full Text] [Related]
5. Random forest based similarity learning for single cell RNA sequencing data. Pouyan MB; Kostka D Bioinformatics; 2018 Jul; 34(13):i79-i88. PubMed ID: 29950006 [TBL] [Abstract][Full Text] [Related]
6. Robust and accurate estimation of cellular fraction from tissue omics data via ensemble deconvolution. Cai M; Yue M; Chen T; Liu J; Forno E; Lu X; Billiar T; Celedón J; McKennan C; Chen W; Wang J Bioinformatics; 2022 May; 38(11):3004-3010. PubMed ID: 35438146 [TBL] [Abstract][Full Text] [Related]
7. scAnno: a deconvolution strategy-based automatic cell type annotation tool for single-cell RNA-sequencing data sets. Liu H; Li H; Sharma A; Huang W; Pan D; Gu Y; Lin L; Sun X; Liu H Brief Bioinform; 2023 May; 24(3):. PubMed ID: 37183449 [TBL] [Abstract][Full Text] [Related]
8. Scalable preprocessing for sparse scRNA-seq data exploiting prior knowledge. Mukherjee S; Zhang Y; Fan J; Seelig G; Kannan S Bioinformatics; 2018 Jul; 34(13):i124-i132. PubMed ID: 29949988 [TBL] [Abstract][Full Text] [Related]
9. SCRIP: an accurate simulator for single-cell RNA sequencing data. Qin F; Luo X; Xiao F; Cai G Bioinformatics; 2022 Feb; 38(5):1304-1311. PubMed ID: 34874992 [TBL] [Abstract][Full Text] [Related]
10. Effective methods for bulk RNA-seq deconvolution using scnRNA-seq transcriptomes. Cobos FA; Panah MJN; Epps J; Long X; Man TK; Chiu HS; Chomsky E; Kiner E; Krueger MJ; di Bernardo D; Voloch L; Molenaar J; van Hooff SR; Westermann F; Jansky S; Redell ML; Mestdagh P; Sumazin P Genome Biol; 2023 Aug; 24(1):177. PubMed ID: 37528411 [TBL] [Abstract][Full Text] [Related]
11. A machine learning-based method for automatically identifying novel cells in annotating single-cell RNA-seq data. Li Z; Wang Y; Ganan-Gomez I; Colla S; Do KA Bioinformatics; 2022 Oct; 38(21):4885-4892. PubMed ID: 36083008 [TBL] [Abstract][Full Text] [Related]
12. DIMM-SC: a Dirichlet mixture model for clustering droplet-based single cell transcriptomic data. Sun Z; Wang T; Deng K; Wang XF; Lafyatis R; Ding Y; Hu M; Chen W Bioinformatics; 2018 Jan; 34(1):139-146. PubMed ID: 29036318 [TBL] [Abstract][Full Text] [Related]
13. CAMML with the Integration of Marker Proteins (ChIMP). Schiebout C; Frost HR Bioinformatics; 2022 Nov; 38(23):5206-5213. PubMed ID: 36214642 [TBL] [Abstract][Full Text] [Related]
14. scMRA: a robust deep learning method to annotate scRNA-seq data with multiple reference datasets. Yuan M; Chen L; Deng M Bioinformatics; 2022 Jan; 38(3):738-745. PubMed ID: 34623390 [TBL] [Abstract][Full Text] [Related]
15. bayNorm: Bayesian gene expression recovery, imputation and normalization for single-cell RNA-sequencing data. Tang W; Bertaux F; Thomas P; Stefanelli C; Saint M; Marguerat S; Shahrezaei V Bioinformatics; 2020 Feb; 36(4):1174-1181. PubMed ID: 31584606 [TBL] [Abstract][Full Text] [Related]
16. dtangle: accurate and robust cell type deconvolution. Hunt GJ; Freytag S; Bahlo M; Gagnon-Bartsch JA Bioinformatics; 2019 Jun; 35(12):2093-2099. PubMed ID: 30407492 [TBL] [Abstract][Full Text] [Related]
17. Deconvolution from bulk gene expression by leveraging sample-wise and gene-wise similarities and single-cell RNA-Seq data. Wang C; Lin Y; Li S; Guan J BMC Genomics; 2024 Sep; 25(1):875. PubMed ID: 39294558 [TBL] [Abstract][Full Text] [Related]
18. scDeconv: an R package to deconvolve bulk DNA methylation data with scRNA-seq data and paired bulk RNA-DNA methylation data. Liu Y Brief Bioinform; 2022 May; 23(3):. PubMed ID: 35453146 [TBL] [Abstract][Full Text] [Related]
19. CONICS integrates scRNA-seq with DNA sequencing to map gene expression to tumor sub-clones. Müller S; Cho A; Liu SJ; Lim DA; Diaz A Bioinformatics; 2018 Sep; 34(18):3217-3219. PubMed ID: 29897414 [TBL] [Abstract][Full Text] [Related]
20. Highly Accurate Estimation of Cell Type Abundance in Bulk Tissues Based on Single-Cell Reference and Domain Adaptive Matching. Guo X; Huang Z; Ju F; Zhao C; Yu L Adv Sci (Weinh); 2024 Feb; 11(7):e2306329. PubMed ID: 38072669 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]