These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
161 related articles for article (PubMed ID: 35980231)
1. Development of a new 3D bioprinted antibiotic delivery system based on a cross-linked gelatin-alginate hydrogel. Mirek A; Belaid H; Barranger F; Grzeczkowicz M; Bouden Y; Cavaillès V; Lewińska D; Bechelany M J Mater Chem B; 2022 Nov; 10(43):8862-8874. PubMed ID: 35980231 [TBL] [Abstract][Full Text] [Related]
2. Gelatin methacrylate hydrogel with drug-loaded polymer microspheres as a new bioink for 3D bioprinting. Mirek A; Belaid H; Bartkowiak A; Barranger F; Salmeron F; Kajdan M; Grzeczkowicz M; Cavaillès V; Lewińska D; Bechelany M Biomater Adv; 2023 Jul; 150():213436. PubMed ID: 37104964 [TBL] [Abstract][Full Text] [Related]
3. An Interpenetrating Alginate/Gelatin Network for Three-Dimensional (3D) Cell Cultures and Organ Bioprinting. Chen Q; Tian X; Fan J; Tong H; Ao Q; Wang X Molecules; 2020 Feb; 25(3):. PubMed ID: 32050529 [TBL] [Abstract][Full Text] [Related]
4. Manufacturing of self-standing multi-layered 3D-bioprinted alginate-hyaluronate constructs by controlling the cross-linking mechanisms for tissue engineering applications. Janarthanan G; Kim JH; Kim I; Lee C; Chung EJ; Noh I Biofabrication; 2022 May; 14(3):. PubMed ID: 35504259 [TBL] [Abstract][Full Text] [Related]
5. A 3D bioprinted antibacterial hydrogel dressing of gelatin/sodium alginate loaded with ciprofloxacin hydrochloride. Cao L; Lu Y; Chen H; Su Y; Cheng Y; Xu J; Sun H; Song K Biotechnol J; 2024 Aug; 19(8):e2400209. PubMed ID: 39212214 [TBL] [Abstract][Full Text] [Related]
6. 3D bioprinting and in vitro study of bilayered membranous construct with human cells-laden alginate/gelatin composite hydrogels. Liu P; Shen H; Zhi Y; Si J; Shi J; Guo L; Shen SG Colloids Surf B Biointerfaces; 2019 Sep; 181():1026-1034. PubMed ID: 31382330 [TBL] [Abstract][Full Text] [Related]
7. Thiol-Ene Alginate Hydrogels as Versatile Bioinks for Bioprinting. Ooi HW; Mota C; Ten Cate AT; Calore A; Moroni L; Baker MB Biomacromolecules; 2018 Aug; 19(8):3390-3400. PubMed ID: 29939754 [TBL] [Abstract][Full Text] [Related]
8. Three-dimensional printing of cell-laden microporous constructs using blended bioinks. Somasekhar L; Huynh ND; Vecheck A; Kishore V; Bashur CA; Mitra K J Biomed Mater Res A; 2022 Mar; 110(3):535-546. PubMed ID: 34486214 [TBL] [Abstract][Full Text] [Related]
9. Employing PEG crosslinkers to optimize cell viability in gel phase bioinks and tailor post printing mechanical properties. Rutz AL; Gargus ES; Hyland KE; Lewis PL; Setty A; Burghardt WR; Shah RN Acta Biomater; 2019 Nov; 99():121-132. PubMed ID: 31539655 [TBL] [Abstract][Full Text] [Related]
10. Double-Network Polyurethane-Gelatin Hydrogel with Tunable Modulus for High-Resolution 3D Bioprinting. Hsieh CT; Hsu SH ACS Appl Mater Interfaces; 2019 Sep; 11(36):32746-32757. PubMed ID: 31407899 [TBL] [Abstract][Full Text] [Related]
11. Engineering a morphogenetically active hydrogel for bioprinting of bioartificial tissue derived from human osteoblast-like SaOS-2 cells. Neufurth M; Wang X; Schröder HC; Feng Q; Diehl-Seifert B; Ziebart T; Steffen R; Wang S; Müller WEG Biomaterials; 2014 Oct; 35(31):8810-8819. PubMed ID: 25047630 [TBL] [Abstract][Full Text] [Related]
13. Covalently antibacterial alginate-chitosan hydrogel dressing integrated gelatin microspheres containing tetracycline hydrochloride for wound healing. Chen H; Xing X; Tan H; Jia Y; Zhou T; Chen Y; Ling Z; Hu X Mater Sci Eng C Mater Biol Appl; 2017 Jan; 70(Pt 1):287-295. PubMed ID: 27770893 [TBL] [Abstract][Full Text] [Related]
14. Mechanical behaviour of alginate-gelatin hydrogels for 3D bioprinting. Giuseppe MD; Law N; Webb B; A Macrae R; Liew LJ; Sercombe TB; Dilley RJ; Doyle BJ J Mech Behav Biomed Mater; 2018 Mar; 79():150-157. PubMed ID: 29304429 [TBL] [Abstract][Full Text] [Related]
15. Engineering bioprintable alginate/gelatin composite hydrogels with tunable mechanical and cell adhesive properties to modulate tumor spheroid growth kinetics. Jiang T; Munguia-Lopez JG; Gu K; Bavoux MM; Flores-Torres S; Kort-Mascort J; Grant J; Vijayakumar S; De Leon-Rodriguez A; Ehrlicher AJ; Kinsella JM Biofabrication; 2019 Dec; 12(1):015024. PubMed ID: 31404917 [TBL] [Abstract][Full Text] [Related]
16. Wood-based nanocellulose and bioactive glass modified gelatin-alginate bioinks for 3D bioprinting of bone cells. Ojansivu M; Rashad A; Ahlinder A; Massera J; Mishra A; Syverud K; Finne-Wistrand A; Miettinen S; Mustafa K Biofabrication; 2019 Apr; 11(3):035010. PubMed ID: 30754034 [TBL] [Abstract][Full Text] [Related]
17. 3D Bioprinting of Carbohydrazide-Modified Gelatin into Microparticle-Suspended Oxidized Alginate for the Fabrication of Complex-Shaped Tissue Constructs. Heo DN; Alioglu MA; Wu Y; Ozbolat V; Ayan B; Dey M; Kang Y; Ozbolat IT ACS Appl Mater Interfaces; 2020 May; 12(18):20295-20306. PubMed ID: 32274920 [TBL] [Abstract][Full Text] [Related]
18. Alginate-gelatin-Matrigel hydrogels enable the development and multigenerational passaging of patient-derived 3D bioprinted cancer spheroid models. Flores-Torres S; Peza-Chavez O; Kuasne H; Munguia-Lopez JG; Kort-Mascort J; Ferri L; Jiang T; Rajadurai CV; Park M; Sangwan V; Kinsella JM Biofabrication; 2021 Mar; 13(2):. PubMed ID: 33440351 [TBL] [Abstract][Full Text] [Related]
19. Alginate/gelatin blended hydrogel fibers cross-linked by Ca Wang QQ; Liu Y; Zhang CJ; Zhang C; Zhu P Mater Sci Eng C Mater Biol Appl; 2019 Jun; 99():1469-1476. PubMed ID: 30889681 [TBL] [Abstract][Full Text] [Related]
20. Enhanced rheological behaviors of alginate hydrogels with carrageenan for extrusion-based bioprinting. Kim MH; Lee YW; Jung WK; Oh J; Nam SY J Mech Behav Biomed Mater; 2019 Oct; 98():187-194. PubMed ID: 31252328 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]