These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 35980246)

  • 1. Nanomechanical Sensing Using Heater-Integrated Fluidic Resonators.
    Ko J; Khan F; Nam Y; Lee BJ; Lee J
    Nano Lett; 2022 Oct; 22(19):7768-7775. PubMed ID: 35980246
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Coherent Optical Transduction of Suspended Microcapillary Resonators for Multi-Parameter Sensing Applications.
    Martín-Pérez A; Ramos D; Tamayo J; Calleja M
    Sensors (Basel); 2019 Nov; 19(23):. PubMed ID: 31757060
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Tunable micro- and nanomechanical resonators.
    Zhang WM; Hu KM; Peng ZK; Meng G
    Sensors (Basel); 2015 Oct; 15(10):26478-566. PubMed ID: 26501294
    [TBL] [Abstract][Full Text] [Related]  

  • 4. High-speed multiple-mode mass-sensing resolves dynamic nanoscale mass distributions.
    Olcum S; Cermak N; Wasserman SC; Manalis SR
    Nat Commun; 2015 May; 6():7070. PubMed ID: 25963304
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nanomechanical Pyrolytic Carbon Resonators: Novel Fabrication Method and Characterization of Mechanical Properties.
    Kurek M; Larsen FK; Larsen PE; Schmid S; Boisen A; Keller SS
    Sensors (Basel); 2016 Jul; 16(7):. PubMed ID: 27428980
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Thermal monitoring during photothermia: hybrid probes for simultaneous plasmonic heating and near-infrared optical nanothermometry.
    Quintanilla M; García I; de Lázaro I; García-Alvarez R; Henriksen-Lacey M; Vranic S; Kostarelos K; Liz-Marzán LM
    Theranostics; 2019; 9(24):7298-7312. PubMed ID: 31695769
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Advanced operation of heated fluidic resonators via mechanical and thermal loss reduction in vacuum.
    Ko J; Lee BJ; Lee J
    Microsyst Nanoeng; 2023; 9():127. PubMed ID: 37829159
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Single-molecule optical absorption imaging by nanomechanical photothermal sensing.
    Chien MH; Brameshuber M; Rossboth BK; Schütz GJ; Schmid S
    Proc Natl Acad Sci U S A; 2018 Oct; 115(44):11150-11155. PubMed ID: 30254155
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Design, Simulation, and Fabrication of a Copper-Chrome-Based Glass Heater Integrated into a PMMA Microfluidic System.
    Tovar S; Hernández CA; Osma JF
    Micromachines (Basel); 2021 Sep; 12(9):. PubMed ID: 34577711
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Nanomechanical silicon resonators with intrinsic tunable gain and sub-nW power consumption.
    Bartsch ST; Lovera A; Grogg D; Ionescu AM
    ACS Nano; 2012 Jan; 6(1):256-64. PubMed ID: 22148851
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Wavelength-Dependent Photothermal Imaging Probes Nanoscale Temperature Differences among Subdiffraction Coupled Plasmonic Nanorods.
    Hosseini Jebeli SA; West CA; Lee SA; Goldwyn HJ; Bilchak CR; Fakhraai Z; Willets KA; Link S; Masiello DJ
    Nano Lett; 2021 Jun; 21(12):5386-5393. PubMed ID: 34061548
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Electrical and Thermal Properties of Heater-Sensor Microsystems Patterned in TCO Films for Wide-Range Temperature Applications from 15 K to 350 K.
    Pawlak R; Lebioda M
    Sensors (Basel); 2018 Jun; 18(6):. PubMed ID: 29874822
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Photothermal Responsivity of van der Waals Material-Based Nanomechanical Resonators.
    Aguila MAC; Esmenda JC; Wang JY; Chen YC; Lee TH; Yang CY; Lin KH; Chang-Liao KS; Kafanov S; Pashkin YA; Chen CD
    Nanomaterials (Basel); 2022 Aug; 12(15):. PubMed ID: 35957105
    [TBL] [Abstract][Full Text] [Related]  

  • 14. High spatial resolution Raman thermometry analysis of TiO2 microparticles.
    Lundt N; Kelly ST; Rödel T; Remez B; Schwartzberg AM; Ceballos A; Baldasseroni C; Anastasi PA; Cox M; Hellman F; Leone SR; Gilles MK
    Rev Sci Instrum; 2013 Oct; 84(10):104906. PubMed ID: 24182150
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Transduction of Single Nanomechanical Pillar Resonators by Scattering of Surface Acoustic Waves.
    Kähler H; Arthaber H; Winkler R; West RG; Ignat I; Plank H; Schmid S
    Nano Lett; 2023 May; 23(10):4344-4350. PubMed ID: 37167540
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Single-Nanoparticle Thermometry with a Nanopipette.
    Holub M; Adobes-Vidal M; Frutiger A; Gschwend PM; Pratsinis SE; Momotenko D
    ACS Nano; 2020 Jun; 14(6):7358-7369. PubMed ID: 32426962
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Nano-Optomechanical Resonators Based on Suspended Graphene for Thermal Stress Sensing.
    Liu S; Xiao H; Chen Y; Chen P; Yan W; Lin Q; Liu B; Xu X; Wang Y; Weng X; Liu L; Qu J
    Sensors (Basel); 2022 Nov; 22(23):. PubMed ID: 36501770
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cellular and biomolecular detection based on suspended microchannel resonators.
    Ko J; Jeong J; Son S; Lee J
    Biomed Eng Lett; 2021 Nov; 11(4):367-382. PubMed ID: 34616583
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Nanomechanical thermometry for probing sub-nW thermal transport.
    Oh S; Shekhawat NS; Jameel O; Lal A; Lee CH
    Microsyst Nanoeng; 2024 Oct; 10(1):148. PubMed ID: 39420179
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Sub-picowatt/kelvin resistive thermometry for probing nanoscale thermal transport.
    Zheng J; Wingert MC; Dechaumphai E; Chen R
    Rev Sci Instrum; 2013 Nov; 84(11):114901. PubMed ID: 24289425
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.