These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
316 related articles for article (PubMed ID: 35980284)
1. Novel Urea-Based Molecule Functioning as a Solid Electrolyte Interphase Enabler and LiPF Zhou P; Xia Y; Wu Y; Hou WH; Lu Y; Yan SS; Zhou HY; Zhang W; Liu K ACS Appl Mater Interfaces; 2022 Aug; 14(34):38921-38930. PubMed ID: 35980284 [TBL] [Abstract][Full Text] [Related]
2. Breaking the Solubility Limit of LiNO Zhong J; Wang Z; Yi X; Li X; Guo H; Peng W; Wang J; Yan G Small; 2024 Apr; 20(14):e2308678. PubMed ID: 37990362 [TBL] [Abstract][Full Text] [Related]
3. An Inorganic-Rich Solid Electrolyte Interphase for Advanced Lithium-Metal Batteries in Carbonate Electrolytes. Liu S; Ji X; Piao N; Chen J; Eidson N; Xu J; Wang P; Chen L; Zhang J; Deng T; Hou S; Jin T; Wan H; Li J; Tu J; Wang C Angew Chem Int Ed Engl; 2021 Feb; 60(7):3661-3671. PubMed ID: 33166432 [TBL] [Abstract][Full Text] [Related]
4. The Synergetic Effect of Lithium Bisoxalatodifluorophosphate and Fluoroethylene Carbonate on Dendrite Suppression for Fast Charging Lithium Metal Batteries. Shi P; Liu F; Feng Y; Zhou J; Rui X; Yu Y Small; 2020 Jul; 16(30):e2001989. PubMed ID: 32521092 [TBL] [Abstract][Full Text] [Related]
5. High Interfacial-Energy Interphase Promoting Safe Lithium Metal Batteries. Liu S; Ji X; Yue J; Hou S; Wang P; Cui C; Chen J; Shao B; Li J; Han F; Tu J; Wang C J Am Chem Soc; 2020 Feb; 142(5):2438-2447. PubMed ID: 31927894 [TBL] [Abstract][Full Text] [Related]
6. Long-Life and High-Rate-Charging Lithium Metal Batteries Enabled by a Flexible Active Solid Electrolyte Interphase Layer. Zhang D; Gu R; Guo W; Xu Q; Li H; Min Y ACS Appl Mater Interfaces; 2021 Dec; 13(50):60678-60688. PubMed ID: 34878253 [TBL] [Abstract][Full Text] [Related]
7. Optimizing Electrode/Electrolyte Interphases and Li-Ion Flux/Solvation for Lithium-Metal Batteries with Qua-Functional Heptafluorobutyric Anhydride. Huang J; Liu J; He J; Wu M; Qi S; Wang H; Li F; Ma J Angew Chem Int Ed Engl; 2021 Sep; 60(38):20717-20722. PubMed ID: 34288325 [TBL] [Abstract][Full Text] [Related]
8. Competitive Solvation Enhanced Stability of Lithium Metal Anode in Dual-Salt Electrolyte. Zhang S; Yang G; Liu Z; Li X; Wang X; Chen R; Wu F; Wang Z; Chen L Nano Lett; 2021 Apr; 21(7):3310-3317. PubMed ID: 33797262 [TBL] [Abstract][Full Text] [Related]
9. Characterization of the structure and chemistry of the solid-electrolyte interface by cryo-EM leads to high-performance solid-state Li-metal batteries. Lin R; He Y; Wang C; Zou P; Hu E; Yang XQ; Xu K; Xin HL Nat Nanotechnol; 2022 Jul; 17(7):768-776. PubMed ID: 35773425 [TBL] [Abstract][Full Text] [Related]
10. The Versatile Establishment of Charge Storage in Polymer Solid Electrolyte with Enhanced Charge Transfer for LiF-Rich SEI Generation in Lithium Metal Batteries. Liang W; Zhou X; Zhang B; Zhao Z; Song X; Chen K; Wang L; Ma Z; Liu J Angew Chem Int Ed Engl; 2024 Apr; 63(18):e202320149. PubMed ID: 38430213 [TBL] [Abstract][Full Text] [Related]
11. Stable Solvent-Derived Inorganic-Rich Solid Electrolyte Interphase (SEI) for High-Voltage Lithium-Metal Batteries. Chen Z; Wang B; Li Y; Bai F; Zhou Y; Li C; Li T ACS Appl Mater Interfaces; 2022 Jun; 14(24):28014-28020. PubMed ID: 35671045 [TBL] [Abstract][Full Text] [Related]
12. Promoting a Stable Interface Using Localized High-Concentration Carbonate-Based Electrolyte for Li Metal Batteries. Le L; Liao M; Nguyen A; Wang D ACS Appl Mater Interfaces; 2023 Aug; 15(31):37497-37503. PubMed ID: 37497557 [TBL] [Abstract][Full Text] [Related]
13. Sustained Release-Driven Interface Engineering Enables Fast Charging Lithium Metal Batteries. You Y; Duan H; Tan H; Huang Q; Li Q; Wang X; Huang J; Xu G; Wang G Small; 2024 Jun; 20(26):e2310843. PubMed ID: 38247199 [TBL] [Abstract][Full Text] [Related]
14. Fluorinated Carbamate-Based Electrolyte Enables Anion-Dominated Solid Electrolyte Interphase for Highly Reversible Li Metal Anode. Hou WH; Zhou P; Gu H; Ou Y; Xia Y; Song X; Lu Y; Yan S; Cao Q; Liu H; Liu F; Liu K ACS Nano; 2023 Sep; 17(17):17527-17535. PubMed ID: 37578399 [TBL] [Abstract][Full Text] [Related]
15. Rationally Designed Fluorinated Amide Additive Enables the Stable Operation of Lithium Metal Batteries by Regulating the Interfacial Chemistry. Zhou P; Xia Y; Hou WH; Yan S; Zhou HY; Zhang W; Lu Y; Wang P; Liu K Nano Lett; 2022 Jul; 22(14):5936-5943. PubMed ID: 35819353 [TBL] [Abstract][Full Text] [Related]
16. Performance Leap of Lithium Metal Batteries in LiPF Zhang J; Shi J; Gordon LW; Shojarazavi N; Wen X; Zhao Y; Chen J; Su CC; Messinger RJ; Guo J ACS Appl Mater Interfaces; 2022 Aug; 14(32):36679-36687. PubMed ID: 35930841 [TBL] [Abstract][Full Text] [Related]
17. Stable Lithium-Carbon Composite Enabled by Dual-Salt Additives. Zheng L; Guo F; Kang T; Fan Y; Gu W; Mao Y; Liu Y; Huang R; Li Z; Shen Y; Lu W; Chen L Nanomicro Lett; 2021 Apr; 13(1):111. PubMed ID: 34138358 [TBL] [Abstract][Full Text] [Related]
18. Salt-in-Salt Reinforced Carbonate Electrolyte for Li Metal Batteries. Liu S; Xia J; Zhang W; Wan H; Zhang J; Xu J; Rao J; Deng T; Hou S; Nan B; Wang C Angew Chem Int Ed Engl; 2022 Oct; 61(43):e202210522. PubMed ID: 36040840 [TBL] [Abstract][Full Text] [Related]
19. Crosslinked solubilizer enables nitrate-enriched carbonate polymer electrolytes for stable, high-voltage lithium metal batteries. Jing C; Dai K; Liu D; Wang W; Chen L; Zhang C; Wei W Sci Bull (Beijing); 2024 Jan; 69(2):209-217. PubMed ID: 38007330 [TBL] [Abstract][Full Text] [Related]
20. Collaborative Assembly of a Fluorine-Enriched Heterostructured Solid Electrolyte Interphase for Ultralong-Life Lithium Metal Batteries. Zhang Y; Liu Y; Tan L; Zhou J; Ding F; Wang S; Li M; Li H; Yi C ACS Appl Mater Interfaces; 2022 Sep; 14(38):43917-43925. PubMed ID: 36107732 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]