BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

188 related articles for article (PubMed ID: 35980460)

  • 1. [Artificial intelligence in orthopaedic and trauma surgery imaging].
    Rohde S; Münnich N
    Orthopadie (Heidelb); 2022 Sep; 51(9):748-756. PubMed ID: 35980460
    [TBL] [Abstract][Full Text] [Related]  

  • 2. What Are the Applications and Limitations of Artificial Intelligence for Fracture Detection and Classification in Orthopaedic Trauma Imaging? A Systematic Review.
    Langerhuizen DWG; Janssen SJ; Mallee WH; van den Bekerom MPJ; Ring D; Kerkhoffs GMMJ; Jaarsma RL; Doornberg JN
    Clin Orthop Relat Res; 2019 Nov; 477(11):2482-2491. PubMed ID: 31283727
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Artificial intelligence and computer vision in orthopaedic trauma : the why, what, and how.
    Prijs J; Liao Z; Ashkani-Esfahani S; Olczak J; Gordon M; Jayakumar P; Jutte PC; Jaarsma RL; IJpma FFA; Doornberg JN;
    Bone Joint J; 2022 Aug; 104-B(8):911-914. PubMed ID: 35909378
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cortical shell unwrapping for vertebral body abnormality detection on computed tomography.
    Yao J; Burns JE; Muñoz H; Summers RM
    Comput Med Imaging Graph; 2014 Oct; 38(7):628-38. PubMed ID: 24815367
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Bone segmentation and fracture detection in ultrasound using 3D local phase features.
    Hacihaliloglu I; Abugharbieh R; Hodgson A; Rohling R
    Med Image Comput Comput Assist Interv; 2008; 11(Pt 1):287-95. PubMed ID: 18979759
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A comprehensive exploration of artificial intelligence in orthopaedics within lower-middle-income countries: a narrative review.
    Banatwala UESS; Ibrahim MT; Shaikh RH; Shahzad H; Hoodbhoy Z; Noordin S
    J Pak Med Assoc; 2024 Apr; 74(4 (Supple-4)):S90-S96. PubMed ID: 38712415
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Enabling Personalized Medicine in Orthopaedic Surgery Through Artificial Intelligence: A Critical Analysis Review.
    Huffman N; Pasqualini I; Khan ST; Klika AK; Deren ME; Jin Y; Kunze KN; Piuzzi NS
    JBJS Rev; 2024 Mar; 12(3):. PubMed ID: 38466797
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Automatic vertebral morphometry assessment.
    Casciaro S; Massoptier L
    Annu Int Conf IEEE Eng Med Biol Soc; 2007; 2007():5571-4. PubMed ID: 18003275
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Automated model-based rib cage segmentation and labeling in CT images.
    Klinder T; Lorenz C; von Berg J; Dries SP; Bülow T; Ostermann J
    Med Image Comput Comput Assist Interv; 2007; 10(Pt 2):195-202. PubMed ID: 18044569
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Application and prospect of machine learning in orthopaedic trauma].
    Tian C; Chen X; Zhu H; Qin S; Shi L; Rui Y
    Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi; 2023 Dec; 37(12):1562-1568. PubMed ID: 38130202
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Unveiling the potential of artificial intelligence in orthopaedic surgery.
    Powling AS; Lisacek-Kiosoglous AB; Fontalis A; Mazomenos E; Haddad FS
    Br J Hosp Med (Lond); 2023 Dec; 84(12):1-5. PubMed ID: 38153019
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Meaningless Applications and Misguided Methodologies in Artificial Intelligence-Related Orthopaedic Research Propagates Hype Over Hope.
    Ramkumar PN; Pang M; Polisetty T; Helm JM; Karnuta JM
    Arthroscopy; 2022 Sep; 38(9):2761-2766. PubMed ID: 35550419
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Reliability of a new method for lower-extremity measurements based on stereoradiographic three-dimensional reconstruction.
    Guenoun B; Zadegan F; Aim F; Hannouche D; Nizard R
    Orthop Traumatol Surg Res; 2012 Sep; 98(5):506-13. PubMed ID: 22858107
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Artificial intelligence in foot and ankle surgery: current concepts.
    Vaish A; Migliorini F; Vaishya R
    Orthopadie (Heidelb); 2023 Dec; 52(12):1011-1016. PubMed ID: 37626240
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Applications of artificial intelligence in orthopaedic surgery.
    Farhadi F; Barnes MR; Sugito HR; Sin JM; Henderson ER; Levy JJ
    Front Med Technol; 2022; 4():995526. PubMed ID: 36590152
    [TBL] [Abstract][Full Text] [Related]  

  • 16. 3D/2D image registration: the impact of X-ray views and their number.
    Tomazevic D; Likar B; Pernus F
    Med Image Comput Comput Assist Interv; 2007; 10(Pt 1):450-7. PubMed ID: 18051090
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Artificial intelligence in orthopaedics: A scoping review.
    Federer SJ; Jones GG
    PLoS One; 2021; 16(11):e0260471. PubMed ID: 34813611
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Correction for the dislocation of curved surfaces caused by the PSF in 2D and 3D CT images.
    Bouma H; Vilanova A; van Vliet LJ; Gerritsen FA
    IEEE Trans Pattern Anal Mach Intell; 2005 Sep; 27(9):1501-7. PubMed ID: 16173193
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fast and robust semi-automatic liver segmentation with haptic interaction.
    Vidholm E; Nilsson S; Nyström I
    Med Image Comput Comput Assist Interv; 2006; 9(Pt 2):774-81. PubMed ID: 17354843
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Bayesian tracking of elongated structures in 3D images.
    Schaap M; Smal I; Metz C; van Walsum T; Niessen W
    Inf Process Med Imaging; 2007; 20():74-85. PubMed ID: 17633690
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.