These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 35980579)

  • 1. Tracing and Manipulating Drosophila Cell Lineages Based on CRISPR: CaSSA and CLADES.
    Garcia-Marques J; Lee T
    Methods Mol Biol; 2022; 2540():201-217. PubMed ID: 35980579
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A programmable sequence of reporters for lineage analysis.
    Garcia-Marques J; Espinosa-Medina I; Ku KY; Yang CP; Koyama M; Yu HH; Lee T
    Nat Neurosci; 2020 Dec; 23(12):1618-1628. PubMed ID: 32719561
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Where do they come from, where do they go: cell lineage tracing with CRISPR.
    Kirschner GK
    Plant J; 2023 Sep; 115(5):1167-1168. PubMed ID: 37635439
    [No Abstract]   [Full Text] [Related]  

  • 4. Is it possible to reconstruct an accurate cell lineage using CRISPR recorders?
    Salvador-Martínez I; Grillo M; Averof M; Telford MJ
    Elife; 2019 Jan; 8():. PubMed ID: 30688650
    [TBL] [Abstract][Full Text] [Related]  

  • 5. La CaSSA da Drosophila: A Versatile Expansion of the Tool Box.
    Kanca O; Bellen HJ
    Neuron; 2019 Oct; 104(2):177-179. PubMed ID: 31647888
    [TBL] [Abstract][Full Text] [Related]  

  • 6. An Engineered CRISPR-Cas9 Mouse Line for Simultaneous Readout of Lineage Histories and Gene Expression Profiles in Single Cells.
    Bowling S; Sritharan D; Osorio FG; Nguyen M; Cheung P; Rodriguez-Fraticelli A; Patel S; Yuan WC; Fujiwara Y; Li BE; Orkin SH; Hormoz S; Camargo FD
    Cell; 2020 Jun; 181(6):1410-1422.e27. PubMed ID: 32413320
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A Toolkit of CRISPR-Based Genome Editing Systems in Drosophila.
    Xu J; Ren X; Sun J; Wang X; Qiao HH; Xu BW; Liu LP; Ni JQ
    J Genet Genomics; 2015 Apr; 42(4):141-9. PubMed ID: 25953352
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Highly efficient targeted mutagenesis of Drosophila with the CRISPR/Cas9 system.
    Bassett AR; Tibbit C; Ponting CP; Liu JL
    Cell Rep; 2013 Jul; 4(1):220-8. PubMed ID: 23827738
    [TBL] [Abstract][Full Text] [Related]  

  • 9. CRISPR Rube Goldberg machines for visualizing cell lineage.
    Carey CM; Gagnon JA
    Nat Neurosci; 2020 Dec; 23(12):1469-1471. PubMed ID: 32770155
    [No Abstract]   [Full Text] [Related]  

  • 10. Endogenous CRISPR/Cas9 arrays for scalable whole-organism lineage tracing.
    Cotterell J; Vila-Cejudo M; Batlle-Morera L; Sharpe J
    Development; 2020 May; 147(9):. PubMed ID: 32398353
    [TBL] [Abstract][Full Text] [Related]  

  • 11. CRISPR/Cas9 and genome editing in Drosophila.
    Bassett AR; Liu JL
    J Genet Genomics; 2014 Jan; 41(1):7-19. PubMed ID: 24480743
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Connecting past and present: single-cell lineage tracing.
    Chen C; Liao Y; Peng G
    Protein Cell; 2022 Nov; 13(11):790-807. PubMed ID: 35441356
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Clustered regulatory interspaced short palindromic repeats (CRISPR)-mediated mutagenesis and phenotype rescue by piggyBac transgenesis in a nonmodel Drosophila species.
    Tanaka R; Murakami H; Ote M; Yamamoto D
    Insect Mol Biol; 2016 Aug; 25(4):355-61. PubMed ID: 27015359
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Conditional knockouts generated by engineered CRISPR-Cas9 endonuclease reveal the roles of coronin in C. elegans neural development.
    Shen Z; Zhang X; Chai Y; Zhu Z; Yi P; Feng G; Li W; Ou G
    Dev Cell; 2014 Sep; 30(5):625-36. PubMed ID: 25155554
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A versatile two-step CRISPR- and RMCE-based strategy for efficient genome engineering in Drosophila.
    Zhang X; Koolhaas WH; Schnorrer F
    G3 (Bethesda); 2014 Oct; 4(12):2409-18. PubMed ID: 25324299
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A genome-wide CRISPR library for high-throughput genetic screening in Drosophila cells.
    Bassett AR; Kong L; Liu JL
    J Genet Genomics; 2015 Jun; 42(6):301-9. PubMed ID: 26165496
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Gene targeting technologies in rats: zinc finger nucleases, transcription activator-like effector nucleases, and clustered regularly interspaced short palindromic repeats.
    Mashimo T
    Dev Growth Differ; 2014 Jan; 56(1):46-52. PubMed ID: 24372523
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Advances in application of clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated 9 system in stem cells research].
    Sun SJ; Huo JH; Geng ZJ; Sun XY; Fu XB
    Zhonghua Shao Shang Za Zhi; 2018 Apr; 34(4):253-256. PubMed ID: 29690746
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Editing the Neuronal Genome: a CRISPR View of Chromatin Regulation in Neuronal Development, Function, and Plasticity.
    Yang MG; West AE
    Yale J Biol Med; 2016 Dec; 89(4):457-470. PubMed ID: 28018138
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)/Cas Advancement in Molecular Diagnostics and Signal Readout Approaches.
    Ahmed MZ; Badani P; Reddy R; Mishra G
    J Mol Diagn; 2021 Nov; 23(11):1433-1442. PubMed ID: 34454111
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.