BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

181 related articles for article (PubMed ID: 35980652)

  • 1. A comprehensive comparison of facial skin hydration based on capacitance and conductance measurements in Chinese women.
    Voegeli R; Cherel M; Schoop R; Rawlings AV
    Int J Cosmet Sci; 2022 Dec; 44(6):703-718. PubMed ID: 35980652
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Hydration measurements of the stratum corneum: comparison between the capacitance method (digital version of the Corneometer CM 825®) and the impedance method (Skicon-200EX®).
    Clarys P; Clijsen R; Taeymans J; Barel AO
    Skin Res Technol; 2012 Aug; 18(3):316-23. PubMed ID: 22092664
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Skin conductance; validation of Skicon-200EX compared to the original model, Skicon-100.
    O'goshi K; Serup J
    Skin Res Technol; 2007 Feb; 13(1):13-8. PubMed ID: 17250527
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The effect of 3 moisturisers on skin surface hydration: Electrical conductance (Skicon-200), capacitance (Corneometer CM420), and transepidermal water loss (TEWL).
    Møss J
    Skin Res Technol; 1996 Feb; 2(1):32-6. PubMed ID: 27327056
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A novel continuous colour mapping approach for visualization of facial skin hydration and transepidermal water loss for four ethnic groups.
    Voegeli R; Rawlings AV; Seroul P; Summers B
    Int J Cosmet Sci; 2015 Dec; 37(6):595-605. PubMed ID: 26221966
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Electrical measurement of the water content of the stratum corneum in vivo and in vitro under various conditions: comparison between skin surface hygrometer and corneometer in evaluation of the skin surface hydration state.
    Hashimoto-Kumasaka K; Takahashi K; Tagami H
    Acta Derm Venereol; 1993 Oct; 73(5):335-9. PubMed ID: 7904396
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Understanding effects of topical ingredients on electrical measurement of skin hydration.
    Crowther JM
    Int J Cosmet Sci; 2016 Dec; 38(6):589-598. PubMed ID: 27028308
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Inter-instrumental variation of skin capacitance measured with the Corneometer.
    O'goshi K; Serup J
    Skin Res Technol; 2005 May; 11(2):107-9. PubMed ID: 15807808
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Measurement of skin hydration with a portable device (SkinUp
    Westermann TVA; Viana VR; Berto Junior C; Detoni da Silva CB; Carvalho ELS; Pupe CG
    Skin Res Technol; 2020 Jul; 26(4):571-576. PubMed ID: 31957168
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Assessment of skin moisture. Measurement of electrical conductance, capacitance and transepidermal water loss.
    Blichmann CW; Serup J
    Acta Derm Venereol; 1988; 68(4):284-90. PubMed ID: 2459872
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Influence of probe application pressure on in vitro and in vivo capacitance (Corneometer CM 825(®)) and conductance (Skicon 200 EX(®)) measurements.
    Clarys P; Clijsen R; Barel AO
    Skin Res Technol; 2011 Nov; 17(4):445-50. PubMed ID: 21338409
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Measurement of hydration in the stratum corneum with the MoistureMeter and comparison with the Corneometer.
    Alanen E; Nuutinen J; Nicklén K; Lahtinen T; Mönkkönen J
    Skin Res Technol; 2004 Feb; 10(1):32-7. PubMed ID: 14731246
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Facial skin mapping: from single point bio-instrumental evaluation to continuous visualization of skin hydration, barrier function, skin surface pH, and sebum in different ethnic skin types.
    Voegeli R; Gierschendorf J; Summers B; Rawlings AV
    Int J Cosmet Sci; 2019 Oct; 41(5):411-424. PubMed ID: 31325176
    [TBL] [Abstract][Full Text] [Related]  

  • 14. In vitro calibration of the capacitance method (Corneometer CM 825) and conductance method (Skicon-200) for the evaluation of the hydration state of the skin.
    Barel AO; Clarys P
    Skin Res Technol; 1997 May; 3(2):107-13. PubMed ID: 27333371
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comparative study of normal and rough human skin hydration in vivo: evaluation with four different instruments.
    Van Neste D
    J Dermatol Sci; 1991 Mar; 2(2):119-24. PubMed ID: 2064999
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Measuring the effects of topical moisturizers on changes in stratum corneum thickness, water gradients and hydration in vivo.
    Crowther JM; Sieg A; Blenkiron P; Marcott C; Matts PJ; Kaczvinsky JR; Rawlings AV
    Br J Dermatol; 2008 Sep; 159(3):567-77. PubMed ID: 18616783
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The presence of body hair influences the measurement of skin hydration with the Corneometer.
    Lodén M; Hagforsen E; Lindberg M
    Acta Derm Venereol; 1995 Nov; 75(6):449-50. PubMed ID: 8651022
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Application of three hygrometers under different skin conditions in dogs: dry, moist and haired skin.
    Momota Y; Shimada K; Minorikawa N; Gin A; Matsubara T; Nakamura Y; Katayama M; Sako T
    Vet Dermatol; 2017 Dec; 28(6):554-e131. PubMed ID: 28868812
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Depth profiling of Stratum corneum hydration in vivo: a comparison between conductance and confocal Raman spectroscopic measurements.
    Boncheva M; de Sterke J; Caspers PJ; Puppels GJ
    Exp Dermatol; 2009 Oct; 18(10):870-6. PubMed ID: 19469890
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Modeling Stratum Corneum Swelling for the Optimization of Electrode-Based Skin Hydration Sensors.
    Malnati C; Fehr D; Spano F; Bonmarin M
    Sensors (Basel); 2021 Jun; 21(12):. PubMed ID: 34207803
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.