These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
170 related articles for article (PubMed ID: 35981097)
1. Enhanced Thermoelectric Performance of GeTe-Based Composites Incorporated with Fe Nanoparticles. Zhu C; Wang J; Luo F; Zhang S; Wang J; Zhang Y; Liu H; Sun Z ACS Appl Mater Interfaces; 2022 Aug; 14(34):38854-38864. PubMed ID: 35981097 [TBL] [Abstract][Full Text] [Related]
2. Rhombohedral to Cubic Conversion of GeTe via MnTe Alloying Leads to Ultralow Thermal Conductivity, Electronic Band Convergence, and High Thermoelectric Performance. Zheng Z; Su X; Deng R; Stoumpos C; Xie H; Liu W; Yan Y; Hao S; Uher C; Wolverton C; Kanatzidis MG; Tang X J Am Chem Soc; 2018 Feb; 140(7):2673-2686. PubMed ID: 29350916 [TBL] [Abstract][Full Text] [Related]
3. Boosting the Thermoelectric Properties of Ge Jiang Y; Zhang Y; Wang X; Chen L; Zhang J; Du Y; Xing W; Zhao JT; Li S; Guo K ACS Appl Mater Interfaces; 2024 Oct; 16(42):57218-57227. PubMed ID: 39396197 [TBL] [Abstract][Full Text] [Related]
4. Enhanced Thermoelectric Performance in Ge Xie L; Liu R; Zhu C; Bu Z; Qiu W; Liu J; Xu F; Pei Y; Bai S; Chen L Small; 2021 Jun; 17(25):e2100915. PubMed ID: 34032385 [TBL] [Abstract][Full Text] [Related]
5. Ultralow Lattice Thermal Conductivity and High Thermoelectric Performance in Ge Zhang Q; Ti Z; Zhang Y; Nan P; Li S; Li D; Liu Q; Tang S; Siddique S; Zhang Y; Ge B; Tang G ACS Appl Mater Interfaces; 2023 May; 15(17):21187-21197. PubMed ID: 37083164 [TBL] [Abstract][Full Text] [Related]
6. Low Thermal Conductivity and High Thermoelectric Performance in (GeTe) Samanta M; Biswas K J Am Chem Soc; 2017 Jul; 139(27):9382-9391. PubMed ID: 28625055 [TBL] [Abstract][Full Text] [Related]
7. Ultra-Low Thermal Conductivity and Improved Thermoelectric Performance in Tungsten-Doped GeTe. Cai Z; Zheng K; Ma C; Fang Y; Ma Y; Deng Q; Li H Nanomaterials (Basel); 2024 Apr; 14(8):. PubMed ID: 38668216 [TBL] [Abstract][Full Text] [Related]
8. Study on the Effect of Sn, In, and Se Co-Doping on the Thermoelectric Properties of GeTe. Guo T; Zhang G; Nan B; Xu G; Li S; Ren L Materials (Basel); 2024 Jan; 17(3):. PubMed ID: 38591402 [TBL] [Abstract][Full Text] [Related]
9. Realization of non-equilibrium process for high thermoelectric performance Sb-doped GeTe. Nshimyimana E; Su X; Xie H; Liu W; Deng R; Luo T; Yan Y; Tang X Sci Bull (Beijing); 2018 Jun; 63(11):717-725. PubMed ID: 36658821 [TBL] [Abstract][Full Text] [Related]
10. Medium Entropy-Enabled High Performance Cubic GeTe Thermoelectrics. Zhi S; Li J; Hu L; Li J; Li N; Wu H; Liu F; Zhang C; Ao W; Xie H; Zhao X; Pennycook SJ; Zhu T Adv Sci (Weinh); 2021 Jun; 8(12):2100220. PubMed ID: 34194947 [TBL] [Abstract][Full Text] [Related]
11. Vacancy Suppression Induced Synergetic Optimization of Thermoelectric Performance in Sb-Doped GeTe Evidenced by Positron Annihilation Spectroscopy. Zhang T; Qi N; Su X; Tang X; Chen Z ACS Appl Mater Interfaces; 2023 Aug; 15(34):40665-40675. PubMed ID: 37585556 [TBL] [Abstract][Full Text] [Related]
12. Phase-transition temperature suppression to achieve cubic GeTe and high thermoelectric performance by Bi and Mn codoping. Liu Z; Sun J; Mao J; Zhu H; Ren W; Zhou J; Wang Z; Singh DJ; Sui J; Chu CW; Ren Z Proc Natl Acad Sci U S A; 2018 May; 115(21):5332-5337. PubMed ID: 29735697 [TBL] [Abstract][Full Text] [Related]
13. High Thermoelectric Performance Achieved in Sb-Doped GeTe by Manipulating Carrier Concentration and Nanoscale Twin Grains. Li C; Song H; Dai Z; Zhao Z; Liu C; Yang H; Cui C; Miao L Materials (Basel); 2022 Jan; 15(2):. PubMed ID: 35057127 [TBL] [Abstract][Full Text] [Related]
14. Achieving Ultralow Lattice Thermal Conductivity and High Thermoelectric Performance in GeTe Alloys via Introducing Cu Zhang Q; Ti Z; Zhu Y; Zhang Y; Cao Y; Li S; Wang M; Li D; Zou B; Hou Y; Wang P; Tang G ACS Nano; 2021 Dec; 15(12):19345-19356. PubMed ID: 34734696 [TBL] [Abstract][Full Text] [Related]
15. Synergistically Optimized Carrier and Phonon Transport Properties in Bi-Cu Zhou Q; Tan X; Zhang Q; Wang R; Guo Z; Cai J; Ye J; Liu G; Jiang J ACS Appl Mater Interfaces; 2022 Oct; 14(40):45621-45627. PubMed ID: 36174115 [TBL] [Abstract][Full Text] [Related]
16. Band and Phonon Engineering for Thermoelectric Enhancements of Rhombohedral GeTe. Liu H; Zhang X; Li J; Bu Z; Meng X; Ang R; Li W ACS Appl Mater Interfaces; 2019 Aug; 11(34):30756-30762. PubMed ID: 31386339 [TBL] [Abstract][Full Text] [Related]
17. Improved Cao J; Tan XY; Jia N; Lan D; Solco SFD; Chen K; Chien SW; Liu H; Tan CKI; Zhu Q; Xu J; Yan Q; Suwardi A Nanoscale; 2022 Jan; 14(2):410-418. PubMed ID: 34929726 [TBL] [Abstract][Full Text] [Related]
18. Achieving High-Performance Ge Sun Q; Shi XL; Hong M; Yin Y; Xu SD; Chen J; Yang L; Zou J; Chen ZG Small; 2022 Feb; 18(6):e2105923. PubMed ID: 34854565 [TBL] [Abstract][Full Text] [Related]
19. Ultralow Lattice Thermal Conductivity and Superhigh Thermoelectric Figure-of-Merit in (Mg, Bi) Co-Doped GeTe. Xing T; Zhu C; Song Q; Huang H; Xiao J; Ren D; Shi M; Qiu P; Shi X; Xu F; Chen L Adv Mater; 2021 Apr; 33(17):e2008773. PubMed ID: 33760288 [TBL] [Abstract][Full Text] [Related]
20. Enhancing Near-Room-Temperature GeTe Thermoelectrics through In/Pb Co-doping. Li J; Hu Q; He S; Tan X; Deng Q; Zhong Y; Zhang F; Ang R ACS Appl Mater Interfaces; 2021 Aug; 13(31):37273-37279. PubMed ID: 34319070 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]