These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

164 related articles for article (PubMed ID: 359814)

  • 1. Structures of membrane proteins.
    Kennedy SJ
    J Membr Biol; 1978 Sep; 42(3):265-79. PubMed ID: 359814
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Structural features of transmembrane helices.
    Hildebrand PW; Preissner R; Frömmel C
    FEBS Lett; 2004 Feb; 559(1-3):145-51. PubMed ID: 14960323
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Bundles of amphipathic transmembrane alpha-helices as a structural motif for ion-conducting channel proteins: studies on sodium channels and acetylcholine receptors.
    Oiki S; Madison V; Montal M
    Proteins; 1990; 8(3):226-36. PubMed ID: 2177892
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The membrane environment modulates self-association of the human GpA TM domain--implications for membrane protein folding and transmembrane signaling.
    Anbazhagan V; Schneider D
    Biochim Biophys Acta; 2010 Oct; 1798(10):1899-907. PubMed ID: 20603102
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Defining the transmembrane helix of M2 protein from influenza A by molecular dynamics simulations in a lipid bilayer.
    Forrest LR; Tieleman DP; Sansom MS
    Biophys J; 1999 Apr; 76(4):1886-96. PubMed ID: 10096886
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Conformation and ion-channeling activity of a 27-residue peptide modeled on the single-transmembrane segment of the IsK (minK) protein.
    Aggeli A; Bannister ML; Bell M; Boden N; Findlay JB; Hunter M; Knowles PF; Yang JC
    Biochemistry; 1998 Jun; 37(22):8121-31. PubMed ID: 9609707
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The spontaneous insertion of proteins into and across membranes: the helical hairpin hypothesis.
    Engelman DM; Steitz TA
    Cell; 1981 Feb; 23(2):411-22. PubMed ID: 7471207
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Structures of membrane proteins determined at atomic resolution.
    Sakai H; Tsukihara T
    J Biochem; 1998 Dec; 124(6):1051-9. PubMed ID: 9832606
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Flexible regions within the membrane-embedded portions of polytopic membrane proteins.
    Hamasaki N; Abe Y; Tanner MJ
    Biochemistry; 2002 Mar; 41(12):3852-4. PubMed ID: 11900525
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A structural model of the acetylcholine receptor channel based on partition energy and helix packing calculations.
    Guy HR
    Biophys J; 1984 Jan; 45(1):249-61. PubMed ID: 6324907
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Modeling of peptides and proteins in a membrane environment.II. Structural and energetic aspects of Glycophorin A in a lipid bilayer].
    Volynskiĭ PE; Nol'de DE; Arsen'ev AS; Efremov RG
    Bioorg Khim; 2000 Mar; 26(3):163-72. PubMed ID: 10816813
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A voltage-gated ion channel model inferred from the crystal structure of alamethicin at 1.5-A resolution.
    Fox RO; Richards FM
    Nature; 1982 Nov; 300(5890):325-30. PubMed ID: 6292726
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Structural role of glycine in amyloid fibrils formed from transmembrane alpha-helices.
    Liu W; Crocker E; Zhang W; Elliott JI; Luy B; Li H; Aimoto S; Smith SO
    Biochemistry; 2005 Mar; 44(9):3591-7. PubMed ID: 15736968
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Left-handed polyproline II helices commonly occur in globular proteins.
    Adzhubei AA; Sternberg MJ
    J Mol Biol; 1993 Jan; 229(2):472-93. PubMed ID: 8429558
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The structure of the voltage-sensitive sodium channel. Inferences derived from computer-aided analysis of the Electrophorus electricus channel primary structure.
    Greenblatt RE; Blatt Y; Montal M
    FEBS Lett; 1985 Dec; 193(2):125-34. PubMed ID: 2415395
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Interhelical hydrogen bonding drives strong interactions in membrane proteins.
    Zhou FX; Cocco MJ; Russ WP; Brunger AT; Engelman DM
    Nat Struct Biol; 2000 Feb; 7(2):154-60. PubMed ID: 10655619
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Structural fluctuations between two conformational states of a transmembrane helical peptide are related to its channel-forming properties in planar lipid membranes.
    Vogel H; Nilsson L; Rigler R; Meder S; Boheim G; Beck W; Kurth HH; Jung G
    Eur J Biochem; 1993 Mar; 212(2):305-13. PubMed ID: 7680310
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Systematic molecular dynamics searching in a lipid bilayer: application to the glycophorin A and oncogenic ErbB-2 transmembrane domains.
    Beevers AJ; Kukol A
    J Mol Graph Model; 2006 Oct; 25(2):226-33. PubMed ID: 16434222
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Sequence and conformational preferences at termini of α-helices in membrane proteins: role of the helix environment.
    Shelar A; Bansal M
    Proteins; 2014 Dec; 82(12):3420-36. PubMed ID: 25257385
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ca2+ -ATPase structure in the E1 and E2 conformations: mechanism, helix-helix and helix-lipid interactions.
    Lee AG
    Biochim Biophys Acta; 2002 Oct; 1565(2):246-66. PubMed ID: 12409199
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.