BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

167 related articles for article (PubMed ID: 35981448)

  • 1. An electrochemical system for the rapid and accurate quantitation of microbial exoelectrogenic ability.
    Wang H; Zheng Y; Liu J; Zhu B; Qin W; Zhao F
    Biosens Bioelectron; 2022 Nov; 215():114584. PubMed ID: 35981448
    [TBL] [Abstract][Full Text] [Related]  

  • 2. On-going applications of Shewanella species in microbial electrochemical system for bioenergy, bioremediation and biosensing.
    Zou L; Huang YH; Long ZE; Qiao Y
    World J Microbiol Biotechnol; 2018 Dec; 35(1):9. PubMed ID: 30569420
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [Progress in enhancing electron transfer rate between exoelectrogenic microorganisms and electrode interface].
    Liu X; Zhang J; Zhang B; Yang C; Li F; Song H
    Sheng Wu Gong Cheng Xue Bao; 2021 Feb; 37(2):361-377. PubMed ID: 33645140
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Microbial extracellular electron transfer and strategies for engineering electroactive microorganisms.
    Zhao J; Li F; Cao Y; Zhang X; Chen T; Song H; Wang Z
    Biotechnol Adv; 2021 Dec; 53():107682. PubMed ID: 33326817
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Tactic Response of Shewanella oneidensis MR-1 toward Insoluble Electron Acceptors.
    Oram J; Jeuken LJC
    mBio; 2019 Jan; 10(1):. PubMed ID: 30647155
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Core/Shell Bacterial Cables: A One-Dimensional Platform for Probing Microbial Electron Transfer.
    Hsu L; Deng P; Zhang Y; Jiang X
    Nano Lett; 2018 Jul; 18(7):4606-4610. PubMed ID: 29923733
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Advances in electrochemically active biofilm of
    Jiang M; Li Y
    Sheng Wu Gong Cheng Xue Bao; 2023 Mar; 39(3):881-897. PubMed ID: 36994560
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Facile One-Step Strategy for Highly Boosted Microbial Extracellular Electron Transfer of the Genus Shewanella.
    Wang Y; Lv M; Meng Q; Ding C; Jiang L; Liu H
    ACS Nano; 2016 Jun; 10(6):6331-7. PubMed ID: 27196945
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Structures, Compositions, and Activities of Live Shewanella Biofilms Formed on Graphite Electrodes in Electrochemical Flow Cells.
    Kitayama M; Koga R; Kasai T; Kouzuma A; Watanabe K
    Appl Environ Microbiol; 2017 Sep; 83(17):. PubMed ID: 28625998
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Advances in interfacial engineering for enhanced microbial extracellular electron transfer.
    Wang YX; Hou N; Liu XL; Mu Y
    Bioresour Technol; 2022 Feb; 345():126562. PubMed ID: 34910968
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Spatiotemporal Mapping of Extracellular Electron Transfer Flux in a Microbial Fuel Cell Using an Oblique Incident Reflectivity Difference Technique.
    Fang C; Li J; Feng Z; Li X; Cheng M; Qiao Y; Hu W
    Anal Chem; 2022 Aug; 94(30):10841-10849. PubMed ID: 35863931
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Electrochemical Detection of Deuterium Kinetic Isotope Effect on Extracellular Electron Transport in Shewanella oneidensis MR-1.
    Tokunou Y; Hashimoto K; Okamoto A
    J Vis Exp; 2018 Apr; (134):. PubMed ID: 29708543
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Nanoelectronic Investigation Reveals the Electrochemical Basis of Electrical Conductivity in Shewanella and Geobacter.
    Ding M; Shiu HY; Li SL; Lee CK; Wang G; Wu H; Weiss NO; Young TD; Weiss PS; Wong GC; Nealson KH; Huang Y; Duan X
    ACS Nano; 2016 Nov; 10(11):9919-9926. PubMed ID: 27787972
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A high-throughput dye-reducing photometric assay for evaluating microbial exoelectrogenic ability.
    Xiao X; Liu QY; Li TT; Zhang F; Li WW; Zhou XT; Xu MY; Li Q; Yu HQ
    Bioresour Technol; 2017 Oct; 241():743-749. PubMed ID: 28628978
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Engineering extracellular electron transfer pathways of electroactive microorganisms by synthetic biology for energy and chemicals production.
    Zhang J; Li F; Liu D; Liu Q; Song H
    Chem Soc Rev; 2024 Feb; 53(3):1375-1446. PubMed ID: 38117181
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Strategies for improving the electroactivity and specific metabolic functionality of microorganisms for various microbial electrochemical technologies.
    Chiranjeevi P; Patil SA
    Biotechnol Adv; 2020; 39():107468. PubMed ID: 31707076
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Electromicrobiology: realities, grand challenges, goals and predictions.
    Nealson KH; Rowe AR
    Microb Biotechnol; 2016 Sep; 9(5):595-600. PubMed ID: 27506517
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A novel growth and isolation medium for exoelectrogenic bacteria.
    Nazeer Z; Fernando EY
    Enzyme Microb Technol; 2022 Apr; 155():109995. PubMed ID: 35066396
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Electrochemical Characteristics of
    Wang S; Zhang X; Marsili E
    Molecules; 2022 Aug; 27(16):. PubMed ID: 36014568
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A Re-evaluation of Electron-Transfer Mechanisms in Microbial Electrochemistry:
    Oram J; Jeuken LJ
    ChemElectroChem; 2016 May; 3(5):829-835. PubMed ID: 27668145
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.