These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

168 related articles for article (PubMed ID: 35981448)

  • 21. Biotechnological Aspects of Microbial Extracellular Electron Transfer.
    Kato S
    Microbes Environ; 2015; 30(2):133-9. PubMed ID: 26004795
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Phenothiazine derivative-accelerated microbial extracellular electron transfer in bioelectrochemical system.
    Liu XW; Sun XF; Chen JJ; Huang YX; Xie JF; Li WW; Sheng GP; Zhang YY; Zhao F; Lu R; Yu HQ
    Sci Rep; 2013; 3():1616. PubMed ID: 23563590
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Molecular mechanisms regulating the catabolic and electrochemical activities of Shewanella oneidensis MR-1.
    Kouzuma A
    Biosci Biotechnol Biochem; 2021 Jun; 85(7):1572-1581. PubMed ID: 33998649
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Facet-engineered hematite boosts microbial electrogenesis by synergy of promoting electroactive biofilm formation and extracellular electron transfer.
    Wen L; Huang L; Wang Y; Yuan Y; Zhou L
    Sci Total Environ; 2022 May; 819():153154. PubMed ID: 35038509
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Promoting
    Zou L; Wu X; Huang Y; Ni H; Long ZE
    Front Microbiol; 2018; 9():3293. PubMed ID: 30697199
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Bidirectional extracellular electron transfers of electrode-biofilm: Mechanism and application.
    Jiang Y; Zeng RJ
    Bioresour Technol; 2019 Jan; 271():439-448. PubMed ID: 30292689
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Nanomaterials Facilitating Microbial Extracellular Electron Transfer at Interfaces.
    Wang R; Li H; Sun J; Zhang L; Jiao J; Wang Q; Liu S
    Adv Mater; 2021 Feb; 33(6):e2004051. PubMed ID: 33325567
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Radionuclide Reduction by Combinatorial Optimization of Microbial Extracellular Electron Transfer with a Physiologically Adapted Regulatory Platform.
    Sun H; Tang Q; Li Y; Liang ZH; Li FH; Li WW; Yu HQ
    Environ Sci Technol; 2023 Jan; 57(1):674-684. PubMed ID: 36576943
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Spatiotemporal mapping of bacterial membrane potential responses to extracellular electron transfer.
    Pirbadian S; Chavez MS; El-Naggar MY
    Proc Natl Acad Sci U S A; 2020 Aug; 117(33):20171-20179. PubMed ID: 32747561
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Nanoliter scale electrochemistry of natural and engineered electroactive bacteria.
    Yates MD; Bird LJ; Eddie BJ; Onderko EL; Voigt CA; Glaven SM
    Bioelectrochemistry; 2021 Feb; 137():107644. PubMed ID: 32971484
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Microfluidic dielectrophoresis illuminates the relationship between microbial cell envelope polarizability and electrochemical activity.
    Wang Q; Jones AD; Gralnick JA; Lin L; Buie CR
    Sci Adv; 2019 Jan; 5(1):eaat5664. PubMed ID: 30746438
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Wettability-regulated extracellular electron transfer from the living organism of Shewanella loihica PV-4.
    Ding CM; Lv ML; Zhu Y; Jiang L; Liu H
    Angew Chem Int Ed Engl; 2015 Jan; 54(5):1446-51. PubMed ID: 25470810
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Enhanced extracellular electron transfer between Shewanella putrefaciens and carbon felt electrode modified by bio-reduced graphene oxide.
    Zhu W; Yao M; Gao H; Wen H; Zhao X; Zhang J; Bai H
    Sci Total Environ; 2019 Nov; 691():1089-1097. PubMed ID: 31466191
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Shewanella putrefaciens CN32 outer membrane cytochromes MtrC and UndA reduce electron shuttles to produce electricity in microbial fuel cells.
    Wu X; Zou L; Huang Y; Qiao Y; Long ZE; Liu H; Li CM
    Enzyme Microb Technol; 2018 Aug; 115():23-28. PubMed ID: 29859599
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Overview of electroactive microorganisms and electron transfer mechanisms in microbial electrochemistry.
    Thapa BS; Kim T; Pandit S; Song YE; Afsharian YP; Rahimnejad M; Kim JR; Oh SE
    Bioresour Technol; 2022 Mar; 347():126579. PubMed ID: 34921921
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Exogenous electron shuttle-mediated extracellular electron transfer of Shewanella putrefaciens 200: electrochemical parameters and thermodynamics.
    Wu Y; Liu T; Li X; Li F
    Environ Sci Technol; 2014 Aug; 48(16):9306-14. PubMed ID: 25058026
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Conduction-band edge dependence of carbon-coated hematite stimulated extracellular electron transfer of Shewanella oneidensis in bioelectrochemical systems.
    Zhou S; Tang J; Yuan Y
    Bioelectrochemistry; 2015 Apr; 102():29-34. PubMed ID: 25483997
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Modular engineering to increase intracellular NAD(H/
    Li F; Li YX; Cao YX; Wang L; Liu CG; Shi L; Song H
    Nat Commun; 2018 Sep; 9(1):3637. PubMed ID: 30194293
    [TBL] [Abstract][Full Text] [Related]  

  • 39. High throughput techniques for the rapid identification of electroactive microorganisms.
    Nath D; Das S; Ghangrekar MM
    Chemosphere; 2021 Dec; 285():131489. PubMed ID: 34265713
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Probing Microbial Extracellular Respiration Ability Using Riboflavin.
    Zhang F; Wu JH; Yu HQ
    Anal Chem; 2020 Aug; 92(15):10606-10612. PubMed ID: 32633502
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.