These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
161 related articles for article (PubMed ID: 35981520)
1. Cytogenetic Mapping of Cattle BAC Probes for the Hypothetical Ancestral Karyotype of the Family Cervidae. Bernegossi AM; Vozdova M; Cernohorska H; Kubickova S; Galindo DJ; Kadlcikova D; Rubes J; Duarte JMB Cytogenet Genome Res; 2022; 162(3):140-147. PubMed ID: 35981520 [TBL] [Abstract][Full Text] [Related]
2. Comparative karyotype analysis of the red brocket deer (M. americana sensu lato and M. rufa) complex: evidence of drastic chromosomal evolution and implications on speciation process. Bernegossi AM; Galindo DJ; Peres PHF; Vozdova M; Cernohorska H; Kubickova S; Kadlcikova D; Rubes J; Duarte JMB J Appl Genet; 2024 Sep; 65(3):601-614. PubMed ID: 38662189 [TBL] [Abstract][Full Text] [Related]
3. Karyotype relationships among selected deer species and cattle revealed by bovine FISH probes. Frohlich J; Kubickova S; Musilova P; Cernohorska H; Muskova H; Vodicka R; Rubes J PLoS One; 2017; 12(11):e0187559. PubMed ID: 29112970 [TBL] [Abstract][Full Text] [Related]
4. Reconstruction of the putative cervidae ancestral karyotype by chromosome painting of Siberian roe deer (Capreolus pygargus) with dromedary probes. Dementyeva PV; Trifonov VA; Kulemzina AI; Graphodatsky AS Cytogenet Genome Res; 2010 Jun; 128(4):228-35. PubMed ID: 20413959 [TBL] [Abstract][Full Text] [Related]
5. Comparative studies of X chromosomes in Cervidae family. Proskuryakova AA; Ivanova ES; Makunin AI; Larkin DM; Ferguson-Smith MA; Yang F; Uphyrkina OV; Perelman PL; Graphodatsky AS Sci Rep; 2023 Jul; 13(1):11992. PubMed ID: 37491593 [TBL] [Abstract][Full Text] [Related]
6. Sperm chromosome segregation of rob(4;16) and rob(4;16)inv(4) in the brown brocket deer (Mazama gouazoubira). Galindo DJ; Vozdova M; Kubickova S; Cernohorska H; Bernegossi AM; Kadlcikova D; Rubes J; Duarte JMB Theriogenology; 2021 Jul; 168():33-40. PubMed ID: 33845262 [TBL] [Abstract][Full Text] [Related]
7. New insights into the karyotypic relationships of Chinese muntjac (Muntiacus reevesi), forest musk deer (Moschus berezovskii) and gayal (Bos frontalis). Chi J; Fu B; Nie W; Wang J; Graphodatsky AS; Yang F Cytogenet Genome Res; 2005; 108(4):310-6. PubMed ID: 15627750 [TBL] [Abstract][Full Text] [Related]
8. Chromosomal evolution of the Chinese muntjac (Muntiacus reevesi). Yang F; O'Brien PC; Wienberg J; Neitzel H; Lin CC; Ferguson-Smith MA Chromosoma; 1997 Jun; 106(1):37-43. PubMed ID: 9169585 [TBL] [Abstract][Full Text] [Related]
9. A molecular cytogenetic analysis of the tribe Bovini (Artiodactyla: Bovidae: Bovinae) with an emphasis on sex chromosome morphology and NOR distribution. Gallagher DS; Davis SK; De Donato M; Burzlaff JD; Womack JE; Taylor JF; Kumamoto AT Chromosome Res; 1999; 7(6):481-92. PubMed ID: 10560971 [TBL] [Abstract][Full Text] [Related]
10. Anchoring the CerEla1.0 Genome Assembly to Red Deer ( Vozdova M; Kubickova S; Cernohorska H; Fröhlich J; Rubes J Animals (Basel); 2021 Sep; 11(9):. PubMed ID: 34573579 [TBL] [Abstract][Full Text] [Related]
11. Comparative Studies of Karyotypes in the Cervidae Family. Proskuryakova AA; Ivanova ES; Perelman PL; Ferguson-Smith MA; Yang F; Okhlopkov IM; Graphodatsky AS Cytogenet Genome Res; 2022; 162(6):312-322. PubMed ID: 36463851 [TBL] [Abstract][Full Text] [Related]
12. Analysis of multiple chromosomal rearrangements in the genome of Willisornis vidua using BAC-FISH and chromosome painting on a supposed conserved karyotype. Ribas TFA; Pieczarka JC; Griffin DK; Kiazim LG; Nagamachi CY; O Brien PCM; Ferguson-Smith MA; Yang F; Aleixo A; O'Connor RE BMC Ecol Evol; 2021 Mar; 21(1):34. PubMed ID: 33653261 [TBL] [Abstract][Full Text] [Related]
13. A reappraisal of the tandem fusion theory of karyotype evolution in Indian muntjac using chromosome painting. Yang F; O'Brien PC; Wienberg J; Ferguson-Smith MA Chromosome Res; 1997 Apr; 5(2):109-17. PubMed ID: 9146914 [TBL] [Abstract][Full Text] [Related]
14. Contrasting origin of B chromosomes in two cervids (Siberian roe deer and grey brocket deer) unravelled by chromosome-specific DNA sequencing. Makunin AI; Kichigin IG; Larkin DM; O'Brien PC; Ferguson-Smith MA; Yang F; Proskuryakova AA; Vorobieva NV; Chernyaeva EN; O'Brien SJ; Graphodatsky AS; Trifonov VA BMC Genomics; 2016 Aug; 17(1):618. PubMed ID: 27516089 [TBL] [Abstract][Full Text] [Related]
15. Defining the orientation of the tandem fusions that occurred during the evolution of Indian muntjac chromosomes by BAC mapping. Chi JX; Huang L; Nie W; Wang J; Su B; Yang F Chromosoma; 2005 Aug; 114(3):167-72. PubMed ID: 16010580 [TBL] [Abstract][Full Text] [Related]
16. Intrapopulation Chromosomal Polymorphism in Mazama gouazoubira (Cetartiodactyla; Cervidae): The Emergence of a New Species? Valeri MP; Tomazella IM; Duarte JMB Cytogenet Genome Res; 2018; 154(3):147-152. PubMed ID: 29656282 [TBL] [Abstract][Full Text] [Related]
18. Cytogenetic anchoring of radiation hybrid and virtual maps of sheep chromosome X and comparison of X chromosomes in sheep, cattle, and human. Goldammer T; Brunner RM; Rebl A; Wu CH; Nomura K; Hadfield T; Maddox JF; Cockett NE Chromosome Res; 2009; 17(4):497-506. PubMed ID: 19575301 [TBL] [Abstract][Full Text] [Related]
19. Phylogenomics of several deer species revealed by comparative chromosome painting with Chinese muntjac paints. Huang L; Chi J; Nie W; Wang J; Yang F Genetica; 2006 May; 127(1-3):25-33. PubMed ID: 16850210 [TBL] [Abstract][Full Text] [Related]
20. Cytogenetic comparison of saola (Pseudoryx nghetinhensis) and cattle (Bos taurus) using G- and Q-banding and FISH. Ahrens E; Graphodatskaya D; Nguyen BX; Stranzinger G Cytogenet Genome Res; 2005; 111(2):147-51. PubMed ID: 16103656 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]