These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

137 related articles for article (PubMed ID: 35981684)

  • 1. BRET measurement on CCD camera-based microtiter plate readers.
    Cho KF; Javier N; Choi K
    SLAS Discov; 2022 Oct; 27(7):413-417. PubMed ID: 35981684
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Reporter-Based BRET Sensors for Measuring Biological Functions In Vivo.
    Rathod M; Mal A; De A
    Methods Mol Biol; 2018; 1790():51-74. PubMed ID: 29858783
    [TBL] [Abstract][Full Text] [Related]  

  • 3. New Horizons on Molecular Pharmacology Applied to Drug Discovery: When Resonance Overcomes Radioligand Binding.
    Pernomian L; Gomes MS; Moreira JD; da Silva CHTP; Rosa JMC; Cardoso CRB
    Curr Radiopharm; 2017; 10(1):16-20. PubMed ID: 28183248
    [TBL] [Abstract][Full Text] [Related]  

  • 4. In Vivo Assessment of Protein-Protein Interactions Using BRET Assay.
    Mujawar A; De A
    Methods Mol Biol; 2022; 2525():239-257. PubMed ID: 35836073
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Measuring Protein-Protein Interactions in Cells using Nanoluciferase Bioluminescence Resonance Energy Transfer (NanoBRET) Assay.
    Szewczyk MM; Owens DDG; Barsyte-Lovejoy D
    Methods Mol Biol; 2023; 2706():137-148. PubMed ID: 37558946
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Use of BRET to Study Protein-Protein Interactions In Vitro and In Vivo.
    Dimri S; Basu S; De A
    Methods Mol Biol; 2016; 1443():57-78. PubMed ID: 27246334
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Single-Cell NanoBRET Imaging with Green-Range HaloTag Acceptor.
    Thirukkumaran O; Mizuno H
    Methods Mol Biol; 2022; 2525():207-218. PubMed ID: 35836070
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cellular Target Engagement Approaches to Monitor Epigenetic Reader Domain Interactions.
    Phillipou AN; Lay CS; Carver CE; Messenger C; Evans JP; Lewis AJ; Gordon LJ; Mahmood M; Greenhough LA; Sammon D; Cheng AT; Chakraborty S; Jones EJ; Lucas SCC; Gatfield KM; Brierley DJ; Craggs PD
    SLAS Discov; 2020 Feb; 25(2):163-175. PubMed ID: 31875412
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A Novel High-Throughput FLIPR Tetra-Based Method for Capturing Highly Confluent Kinetic Data for Structure-Kinetic Relationship Guided Early Drug Discovery.
    Khurana P; McWilliams L; Wingfield J; Barratt D; Srinivasan B
    SLAS Discov; 2021 Jun; 26(5):684-697. PubMed ID: 33783249
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The new era of bioluminescence resonance energy transfer technology.
    De A
    Curr Pharm Biotechnol; 2011 Apr; 12(4):558-68. PubMed ID: 21342101
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Studying RAS Interactions in Live Cells with BRET.
    Columbus J; Turbyville T
    Methods Mol Biol; 2024; 2797():253-260. PubMed ID: 38570465
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Quantitative, Real-Time Measurements of Intracellular Target Engagement Using Energy Transfer.
    Robers MB; Vasta JD; Corona CR; Ohana RF; Hurst R; Jhala MA; Comess KM; Wood KV
    Methods Mol Biol; 2019; 1888():45-71. PubMed ID: 30519940
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comparison of static and microfluidic protease assays using modified bioluminescence resonance energy transfer chemistry.
    Wu N; Dacres H; Anderson A; Trowell SC; Zhu Y
    PLoS One; 2014; 9(2):e88399. PubMed ID: 24551097
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A novel homogeneous bioluminescence resonance energy transfer element for biomolecular detection with CCD camera or CMOS device.
    Filanoski B; Rastogi SK; Cameron E; Mishra NN; Maki W; Maki G
    Luminescence; 2008; 23(1):22-7. PubMed ID: 18167056
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Bioluminescence Resonance Energy Transfer (BRET) Imaging in Living Cells: Image Acquisition and Quantification.
    Kobayashi H; Bouvier M
    Methods Mol Biol; 2021; 2274():305-314. PubMed ID: 34050482
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Bioluminescence resonance energy transfer-based imaging of protein-protein interactions in living cells.
    Kobayashi H; Picard LP; Schönegge AM; Bouvier M
    Nat Protoc; 2019 Apr; 14(4):1084-1107. PubMed ID: 30911173
    [TBL] [Abstract][Full Text] [Related]  

  • 17. High-Throughput Implementation of the NanoBRET Target Engagement Intracellular Kinase Assay to Reveal Differential Compound Engagement by SIK2/3 Isoforms.
    Jin HY; Tudor Y; Choi K; Shao Z; Sparling BA; McGivern JG; Symons A
    SLAS Discov; 2020 Feb; 25(2):215-222. PubMed ID: 31849250
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Experimental determination of the bioluminescence resonance energy transfer (BRET) Förster distances of NanoBRET and red-shifted BRET pairs.
    Weihs F; Wang J; Pfleger KDG; Dacres H
    Anal Chim Acta X; 2020 Nov; 6():100059. PubMed ID: 33392495
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Development and characterisation of a compact device for rapid real-time-on-chip detection of thrombin activity in human serum using bioluminescence resonance energy transfer (BRET).
    Weihs F; Gel M; Wang J; Anderson A; Trowell S; Dacres H
    Biosens Bioelectron; 2020 Jun; 158():112162. PubMed ID: 32275213
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Protocol for kinetic mode potassium channel assays on common plate readers and microscopes.
    Smith E; Dickson L; Pickford P; Rowland A; Shumate J; Perez K; Scampavia L; Hernandez D; Spicer TP
    SLAS Discov; 2024 Apr; 29(3):100148. PubMed ID: 38677875
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.