These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

159 related articles for article (PubMed ID: 35982218)

  • 1. Assessing preoperative risk of STR in skull meningiomas using MR radiomics and machine learning.
    Musigmann M; Akkurt BH; Krähling H; Brokinkel B; Henssen DJHA; Sartoretti T; Nacul NG; Stummer W; Heindel W; Mannil M
    Sci Rep; 2022 Aug; 12(1):14043. PubMed ID: 35982218
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Testing the applicability and performance of Auto ML for potential applications in diagnostic neuroradiology.
    Musigmann M; Akkurt BH; Krähling H; Nacul NG; Remonda L; Sartoretti T; Henssen D; Brokinkel B; Stummer W; Heindel W; Mannil M
    Sci Rep; 2022 Aug; 12(1):13648. PubMed ID: 35953588
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Deep learning-based automatic segmentation of meningioma from T1-weighted contrast-enhanced MRI for preoperative meningioma differentiation using radiomic features.
    Yang L; Wang T; Zhang J; Kang S; Xu S; Wang K
    BMC Med Imaging; 2024 Mar; 24(1):56. PubMed ID: 38443817
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Radiomics and machine learning may accurately predict the grade and histological subtype in meningiomas using conventional and diffusion tensor imaging.
    Park YW; Oh J; You SC; Han K; Ahn SS; Choi YS; Chang JH; Kim SH; Lee SK
    Eur Radiol; 2019 Aug; 29(8):4068-4076. PubMed ID: 30443758
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Preoperative prediction of CNS WHO grade and tumour aggressiveness in intracranial meningioma based on radiomics and structured semantics.
    Kalasauskas D; Kosterhon M; Kurz E; Schmidt L; Altmann S; Grauhan NF; Sommer C; Othman A; Brockmann MA; Ringel F; Keric N
    Sci Rep; 2024 Sep; 14(1):20586. PubMed ID: 39232068
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Meningioma Consistency Can Be Defined by Combining the Radiomic Features of Magnetic Resonance Imaging and Ultrasound Elastography. A Pilot Study Using Machine Learning Classifiers.
    Cepeda S; Arrese I; García-García S; Velasco-Casares M; Escudero-Caro T; Zamora T; Sarabia R
    World Neurosurg; 2021 Feb; 146():e1147-e1159. PubMed ID: 33259973
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A deep learning radiomics model may help to improve the prediction performance of preoperative grading in meningioma.
    Yang L; Xu P; Zhang Y; Cui N; Wang M; Peng M; Gao C; Wang T
    Neuroradiology; 2022 Jul; 64(7):1373-1382. PubMed ID: 35037985
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Machine Learning Using Multiparametric Magnetic Resonance Imaging Radiomic Feature Analysis to Predict Ki-67 in World Health Organization Grade I Meningiomas.
    Khanna O; Fathi Kazerooni A; Farrell CJ; Baldassari MP; Alexander TD; Karsy M; Greenberger BA; Garcia JA; Sako C; Evans JJ; Judy KD; Andrews DW; Flanders AE; Sharan AD; Dicker AP; Shi W; Davatzikos C
    Neurosurgery; 2021 Oct; 89(5):928-936. PubMed ID: 34460921
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Pseudoprogression prediction in high grade primary CNS tumors by use of radiomics.
    Ari AP; Akkurt BH; Musigmann M; Mammadov O; Blömer DA; Kasap DNG; Henssen DJHA; Nacul NG; Sartoretti E; Sartoretti T; Backhaus P; Thomas C; Stummer W; Heindel W; Mannil M
    Sci Rep; 2022 Apr; 12(1):5915. PubMed ID: 35396525
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Comparison of machine learning classifiers for differentiation of grade 1 from higher gradings in meningioma: A multicenter radiomics study.
    Hamerla G; Meyer HJ; Schob S; Ginat DT; Altman A; Lim T; Gihr GA; Horvath-Rizea D; Hoffmann KT; Surov A
    Magn Reson Imaging; 2019 Nov; 63():244-249. PubMed ID: 31425811
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Meningiomas: Preoperative predictive histopathological grading based on radiomics of MRI.
    Han Y; Wang T; Wu P; Zhang H; Chen H; Yang C
    Magn Reson Imaging; 2021 Apr; 77():36-43. PubMed ID: 33220449
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Deep learning-based automatic segmentation of meningioma from multiparametric MRI for preoperative meningioma differentiation using radiomic features: a multicentre study.
    Chen H; Li S; Zhang Y; Liu L; Lv X; Yi Y; Ruan G; Ke C; Feng Y
    Eur Radiol; 2022 Oct; 32(10):7248-7259. PubMed ID: 35420299
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A magnetic resonance imaging based radiomics model to predict mitosis cycles in intracranial meningioma.
    Krähling H; Musigmann M; Akkurt BH; Sartoretti T; Sartoretti E; Henssen DJHA; Stummer W; Heindel W; Brokinkel B; Mannil M
    Sci Rep; 2023 Jan; 13(1):969. PubMed ID: 36653482
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A deep learning radiomics model for preoperative grading in meningioma.
    Zhu Y; Man C; Gong L; Dong D; Yu X; Wang S; Fang M; Wang S; Fang X; Chen X; Tian J
    Eur J Radiol; 2019 Jul; 116():128-134. PubMed ID: 31153553
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Radiomic signatures of meningiomas using the Ki-67 proliferation index as a prognostic marker of clinical outcomes.
    Khanna O; Fathi Kazerooni A; Arif S; Mahtabfar A; Momin AA; Andrews CE; Hafazalla K; Baldassari MP; Velagapudi L; Garcia JA; Sako C; Farrell CJ; Evans JJ; Judy KD; Andrews DW; Flanders AE; Shi W; Davatzikos C
    Neurosurg Focus; 2023 Jun; 54(6):E17. PubMed ID: 37552657
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A Machine Learning Model Based on Unsupervised Clustering Multihabitat to Predict the Pathological Grading of Meningiomas.
    Wang X; Li J; Sun J; Liu W; Cai L; Zhao P; Yang Z; Lv H; Wang Z
    Biomed Res Int; 2022; 2022():8955227. PubMed ID: 36132071
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Presurgical detection of brain invasion status in meningiomas based on first-order histogram based texture analysis of contrast enhanced imaging.
    Kandemirli SG; Chopra S; Priya S; Ward C; Locke T; Soni N; Srivastava S; Jones K; Bathla G
    Clin Neurol Neurosurg; 2020 Nov; 198():106205. PubMed ID: 32932028
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Radiomics approach for prediction of recurrence in skull base meningiomas.
    Zhang Y; Chen JH; Chen TY; Lim SW; Wu TC; Kuo YT; Ko CC; Su MY
    Neuroradiology; 2019 Dec; 61(12):1355-1364. PubMed ID: 31324948
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A radiomics model for preoperative prediction of brain invasion in meningioma non-invasively based on MRI: A multicentre study.
    Zhang J; Yao K; Liu P; Liu Z; Han T; Zhao Z; Cao Y; Zhang G; Zhang J; Tian J; Zhou J
    EBioMedicine; 2020 Aug; 58():102933. PubMed ID: 32739863
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Machine learning-based radiomics analysis in predicting the meningioma grade using multiparametric MRI.
    Hu J; Zhao Y; Li M; Liu J; Wang F; Weng Q; Wang X; Cao D
    Eur J Radiol; 2020 Oct; 131():109251. PubMed ID: 32916409
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.