BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

151 related articles for article (PubMed ID: 35982364)

  • 21. Deep Learning-Based Software Improves Clinicians' Detection Sensitivity of Aneurysms on Brain TOF-MRA.
    Sohn B; Park KY; Choi J; Koo JH; Han K; Joo B; Won SY; Cha J; Choi HS; Lee SK
    AJNR Am J Neuroradiol; 2021 Oct; 42(10):1769-1775. PubMed ID: 34385143
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Deep neural network-based computer-assisted detection of cerebral aneurysms in MR angiography.
    Nakao T; Hanaoka S; Nomura Y; Sato I; Nemoto M; Miki S; Maeda E; Yoshikawa T; Hayashi N; Abe O
    J Magn Reson Imaging; 2018 Apr; 47(4):948-953. PubMed ID: 28836310
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Synthetic Time of Flight Magnetic Resonance Angiography Generation Model Based on Cycle-Consistent Generative Adversarial Network Using PETRA-MRA in the Patients With Treated Intracranial Aneurysm.
    You SH; Cho Y; Kim B; Yang KS; Kim BK; Park SE
    J Magn Reson Imaging; 2022 Nov; 56(5):1513-1528. PubMed ID: 35142407
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Ultrashort Echo Time Magnetic Resonance Angiography in Follow-up of Intracranial Aneurysms Treated With Endovascular Coiling: Comparison of Time-of-Flight, Pointwise Encoding Time Reduction With Radial Acquisition, and Contrast-Enhanced Magnetic Resonance Angiography.
    You SH; Kim B; Yang KS; Kim BK; Ryu J
    Neurosurgery; 2021 Jan; 88(2):E179-E189. PubMed ID: 33319900
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Follow-up of intracranial aneurysms selectively treated with coils: Prospective evaluation of contrast-enhanced MR angiography.
    Pierot L; Delcourt C; Bouquigny F; Breidt D; Feuillet B; Lanoix O; Gallas S
    AJNR Am J Neuroradiol; 2006 Apr; 27(4):744-9. PubMed ID: 16611757
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Follow-up of intracranial aneurysms treated by flow diverter: comparison of three-dimensional time-of-flight MR angiography (3D-TOF-MRA) and contrast-enhanced MR angiography (CE-MRA) sequences with digital subtraction angiography as the gold standard.
    Attali J; Benaissa A; Soize S; Kadziolka K; Portefaix C; Pierot L
    J Neurointerv Surg; 2016 Jan; 8(1):81-6. PubMed ID: 25352582
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Usefulness of Noncontrast-Enhanced Silent Magnetic Resonance Angiography (MRA) for Treated Intracranial Aneurysm Follow-up in Comparison with Time-of-Flight MRA.
    Ryu KH; Baek HJ; Moon JI; Choi BH; Park SE; Ha JY; Park H; Kim SS; Kim JS; Cho SB; Carl M
    Neurosurgery; 2020 Aug; 87(2):220-228. PubMed ID: 31625579
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Usefulness of Silent Magnetic Resonance Angiography in the Follow-Up of Endovascular-Treated Intracranial Aneurysm: A Prospective Study.
    Tan S; Lu Y; Li B; Wu Q; Zhou X; Wang Y
    J Stroke Cerebrovasc Dis; 2022 Feb; 31(2):106256. PubMed ID: 34923434
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Diagnostic value of 3D time-of-flight magnetic resonance angiography for detecting intracranial aneurysm: a meta-analysis.
    HaiFeng L; YongSheng X; YangQin X; Yu D; ShuaiWen W; XingRu L; JunQiang L
    Neuroradiology; 2017 Nov; 59(11):1083-1092. PubMed ID: 28887618
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Time-of-flight MR angiography at 3T versus digital subtraction angiography in the imaging follow-up of 51 intracranial aneurysms treated with coils.
    Ferré JC; Carsin-Nicol B; Morandi X; Carsin M; de Kersaint-Gilly A; Gauvrit JY; Desal HA
    Eur J Radiol; 2009 Dec; 72(3):365-9. PubMed ID: 18809272
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Automated Detection of Cerebral Aneurysms on TOF-MRA Using a Deep Learning Approach: An External Validation Study.
    Lehnen NC; Haase R; Schmeel FC; Vatter H; Dorn F; Radbruch A; Paech D
    AJNR Am J Neuroradiol; 2022 Dec; 43(12):1700-1705. PubMed ID: 36357154
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Building Three-Dimensional Intracranial Aneurysm Models from 3D-TOF MRA: a Validation Study.
    Acar T; Karakas AB; Ozer MA; Koc AM; Govsa F
    J Digit Imaging; 2019 Dec; 32(6):963-970. PubMed ID: 31410678
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Highly accelerated time-of-flight magnetic resonance angiography using spiral imaging improves conspicuity of intracranial arterial branches while reducing scan time.
    Greve T; Sollmann N; Hock A; Hey S; Gnanaprakasam V; Nijenhuis M; Zimmer C; Kirschke JS
    Eur Radiol; 2020 Feb; 30(2):855-865. PubMed ID: 31664504
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Follow-up assessment of coiled intracranial aneurysms using zTE MRA as compared with TOF MRA: a preliminary image quality study.
    Shang S; Ye J; Luo X; Qu J; Zhen Y; Wu J
    Eur Radiol; 2017 Oct; 27(10):4271-4280. PubMed ID: 28382536
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Evaluation of the occlusion status of coiled intracranial aneurysms with MR angiography at 3T: is contrast enhancement necessary?
    Sprengers ME; Schaafsma JD; van Rooij WJ; van den Berg R; Rinkel GJ; Akkerman EM; Ferns SP; Majoie CB
    AJNR Am J Neuroradiol; 2009 Oct; 30(9):1665-71. PubMed ID: 19628623
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Fenestrations accompanied by intracranial aneurysms assessed with magnetic resonance angiography.
    Sun ZK; Li M; Li MH; Li YD; Sun WP; Zhu YQ
    Neurol India; 2012; 60(1):45-9. PubMed ID: 22406779
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Contrast-Enhanced and Time-of-Flight MRA at 3T Compared with DSA for the Follow-Up of Intracranial Aneurysms Treated with the WEB Device.
    Timsit C; Soize S; Benaissa A; Portefaix C; Gauvrit JY; Pierot L
    AJNR Am J Neuroradiol; 2016 Sep; 37(9):1684-9. PubMed ID: 27102311
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Follow-up of coiled cerebral aneurysms: comparison of three-dimensional time-of-flight magnetic resonance angiography at 3 tesla with three-dimensional time-of-flight magnetic resonance angiography and contrast-enhanced magnetic resonance angiography at 1.5 Tesla.
    Anzalone N; Scomazzoni F; Cirillo M; Cadioli M; Iadanza A; Kirchin MA; Scotti G
    Invest Radiol; 2008 Aug; 43(8):559-67. PubMed ID: 18648255
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Automated computer-assisted detection system for cerebral aneurysms in time-of-flight magnetic resonance angiography using fully convolutional network.
    Chen G; Wei X; Lei H; Liqin Y; Yuxin L; Yakang D; Daoying G
    Biomed Eng Online; 2020 May; 19(1):38. PubMed ID: 32471439
    [TBL] [Abstract][Full Text] [Related]  

  • 40. An automatic detection method of cerebral aneurysms in time-of-flight magnetic resonance angiography images based on attention 3D U-Net.
    Chen G; Meng C; Ruoyu D; Dongdong W; Liqin Y; Wei X; Yuxin L; Daoying G
    Comput Methods Programs Biomed; 2022 Oct; 225():106998. PubMed ID: 35939977
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.