These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

108 related articles for article (PubMed ID: 35982388)

  • 1. Valorizing hazardous lead glass sludge and alumina flakes filling waste for the synthesis of geopolymer building bricks.
    Abdel-Gawwad HA; Kassem S; Abadel A; Alghamdi H; Nehdi ML; Shoukry H
    Environ Sci Pollut Res Int; 2023 Jan; 30(2):5267-5279. PubMed ID: 35982388
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Reuse of lead glass sludge in the fabrication of thermally insulating foamed glass with outstanding properties and high Pb-stabilization.
    Abdel-Gawwad HA; Mohammed MS; Arif MA; Shoukry H
    Environ Sci Pollut Res Int; 2022 Jul; 29(31):47209-47224. PubMed ID: 35182335
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Stabilization of hazardous lead glass sludge using reactive magnesia via the fabrication of lightweight building bricks.
    Abdel-Gawwad HA; Abd El-Aleem S; Zayed A
    J Hazard Mater; 2021 Feb; 403():124017. PubMed ID: 33265043
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Valorization of lead-zinc mine tailing waste through geopolymerization: Synthesis, mechanical, and microstructural properties.
    Li D; Ramos AO; Bah A; Li F
    J Environ Manage; 2024 Jan; 349():119501. PubMed ID: 37952378
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Risk assessment and technical feasibility of usage of paper mill sludge biochar-based exhausted adsorbent for geopolymeric brick formation.
    Devi P; Saroha AK
    Environ Sci Pollut Res Int; 2016 Nov; 23(21):21641-21651. PubMed ID: 27522200
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Alkali Activation of Waste Clay Bricks: Influence of The Silica Modulus, SiO
    Gado RA; Hebda M; Łach M; Mikuła J
    Materials (Basel); 2020 Jan; 13(2):. PubMed ID: 31947637
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Environmental, physical and structural characterisation of geopolymer matrixes synthesised from coal (co-)combustion fly ashes.
    Alvarez-Ayuso E; Querol X; Plana F; Alastuey A; Moreno N; Izquierdo M; Font O; Moreno T; Diez S; Vázquez E; Barra M
    J Hazard Mater; 2008 Jun; 154(1-3):175-83. PubMed ID: 18006153
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of waste glass additions on quality of textile sludge-based bricks.
    Rahman A; Urabe T; Kishimoto N; Mizuhara S
    Environ Technol; 2015; 36(19):2443-50. PubMed ID: 25812619
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Immobilization of heavy metal Pb2+ with geopolymer].
    Jin MT; Jin ZF; Huang CJ
    Huan Jing Ke Xue; 2011 May; 32(5):1447-53. PubMed ID: 21780604
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The reuse of waste glass for enhancement of heavy metals immobilization during the introduction of galvanized sludge in brick manufacturing.
    Mao L; Wu Y; Zhang W; Huang Q
    J Environ Manage; 2019 Feb; 231():780-787. PubMed ID: 30415171
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Recycling rice straw ash to produce low thermal conductivity and moisture-resistant geopolymer adobe bricks.
    Morsy MI; Alakeel KA; Ahmed AE; Abbas AM; Omara AI; Abdelsalam NR; Emaish HH
    Saudi J Biol Sci; 2022 May; 29(5):3759-3771. PubMed ID: 35844427
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Sustainable use of tannery sludge in brick manufacturing in Bangladesh.
    Juel MAI; Mizan A; Ahmed T
    Waste Manag; 2017 Feb; 60():259-269. PubMed ID: 28081994
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fabrication of Low-Temperature Sintering Building Bricks Using Drilling Cutting and Geopolymeric Technology.
    Lee WH; Hsieh YC; Wang HW; Ding YC; Cheng TW
    Materials (Basel); 2021 Oct; 14(20):. PubMed ID: 34683533
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Lightweight bricks manufactured from ground soil, textile sludge, and coal ash.
    Chen C; Wu H
    Environ Technol; 2018 Jun; 39(11):1359-1367. PubMed ID: 28488931
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Feasibility of manufacturing geopolymer bricks using circulating fluidized bed combustion bottom ash.
    Chen C; Li Q; Shen L; Zhai J
    Environ Technol; 2012 Jun; 33(10-12):1313-21. PubMed ID: 22856304
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Synthesis of thermostable geopolymer from circulating fluidized bed combustion (CFBC) bottom ashes.
    Xu H; Li Q; Shen L; Wang W; Zhai J
    J Hazard Mater; 2010 Mar; 175(1-3):198-204. PubMed ID: 19879690
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Elucidating the effects of solar panel waste glass substitution on the physical and mechanical characteristics of clay bricks.
    Lin KL; Huang LS; Shie JL; Cheng CJ; Lee CH; Chang TC
    Environ Technol; 2013; 34(1-4):15-24. PubMed ID: 23530311
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Synthesis of water treatment sludge ash-based geopolymers in an Amazonian context.
    Santos GZB; Melo Filho JA; Pinheiro M; Manzato L
    J Environ Manage; 2019 Nov; 249():109328. PubMed ID: 31421479
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The potential of industrial waste: using foundry sand with fly ash and electric arc furnace slag for geopolymer brick production.
    Apithanyasai S; Supakata N; Papong S
    Heliyon; 2020 Mar; 6(3):e03697. PubMed ID: 32258504
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Repurposing carbonate-based waste for producing an innovative binder: optimization and characterization.
    Elshimy AS; Abadel AA; Alghamdi H; Tuladhar R; El-Sokkary TM; Abdel-Gawwad HA; Seliem MK
    Environ Sci Pollut Res Int; 2023 Aug; 30(38):89430-89441. PubMed ID: 37454006
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.