These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
176 related articles for article (PubMed ID: 35982481)
21. Utility of the Fitbit Flex to evaluate sleep in major depressive disorder: A comparison against polysomnography and wrist-worn actigraphy. Cook JD; Prairie ML; Plante DT J Affect Disord; 2017 Aug; 217():299-305. PubMed ID: 28448949 [TBL] [Abstract][Full Text] [Related]
22. Comparison of Commercial Wrist-Based and Smartphone Accelerometers, Actigraphy, and PSG in a Clinical Cohort of Children and Adolescents. Toon E; Davey MJ; Hollis SL; Nixon GM; Horne RS; Biggs SN J Clin Sleep Med; 2016 Mar; 12(3):343-50. PubMed ID: 26446248 [TBL] [Abstract][Full Text] [Related]
23. Automatic sleep/wake scoring from body motion in bed: validation of a newly developed sensor placed under a mattress. Kogure T; Shirakawa S; Shimokawa M; Hosokawa Y J Physiol Anthropol; 2011; 30(3):103-9. PubMed ID: 21636953 [TBL] [Abstract][Full Text] [Related]
24. Validation of Actigraphy in Middle Childhood. Meltzer LJ; Wong P; Biggs SN; Traylor J; Kim JY; Bhattacharjee R; Narang I; Marcus CL; Sleep; 2016 Jun; 39(6):1219-24. PubMed ID: 27091520 [TBL] [Abstract][Full Text] [Related]
25. Comparison of a Commercial Accelerometer with Polysomnography and Actigraphy in Children and Adolescents. Meltzer LJ; Hiruma LS; Avis K; Montgomery-Downs H; Valentin J Sleep; 2015 Aug; 38(8):1323-30. PubMed ID: 26118555 [TBL] [Abstract][Full Text] [Related]
26. Deep Neural Network Sleep Scoring Using Combined Motion and Heart Rate Variability Data. Haghayegh S; Khoshnevis S; Smolensky MH; Diller KR; Castriotta RJ Sensors (Basel); 2020 Dec; 21(1):. PubMed ID: 33374527 [No Abstract] [Full Text] [Related]
27. Actigraphy versus Polysomnography to Measure Sleep in Youth Treated for Craniopharyngioma. Niel K; LaRosa KN; Klages KL; Merchant TE; Wise MS; Witcraft SM; Hancock D; Caples M; Mandrell BN; Crabtree VM Behav Sleep Med; 2020; 18(5):589-597. PubMed ID: 31303059 [TBL] [Abstract][Full Text] [Related]
28. Sleep assessment by means of a wrist actigraphy-based algorithm: agreement with polysomnography in an ambulatory study on older adults. Regalia G; Gerboni G; Migliorini M; Lai M; Pham J; Puri N; Pavlova MK; Picard RW; Sarkis RA; Onorati F Chronobiol Int; 2021 Mar; 38(3):400-414. PubMed ID: 33213222 [TBL] [Abstract][Full Text] [Related]
29. Sleep staging based on autonomic signals: a multi-center validation study. Hedner J; White DP; Malhotra A; Herscovici S; Pittman SD; Zou D; Grote L; Pillar G J Clin Sleep Med; 2011 Jun; 7(3):301-6. PubMed ID: 21677901 [TBL] [Abstract][Full Text] [Related]
30. Validity, potential clinical utility, and comparison of consumer and research-grade activity trackers in Insomnia Disorder I: In-lab validation against polysomnography. Kahawage P; Jumabhoy R; Hamill K; de Zambotti M; Drummond SPA J Sleep Res; 2020 Feb; 29(1):e12931. PubMed ID: 31626361 [TBL] [Abstract][Full Text] [Related]
31. A validation study of Fitbit Charge 2™ compared with polysomnography in adults. de Zambotti M; Goldstone A; Claudatos S; Colrain IM; Baker FC Chronobiol Int; 2018 Apr; 35(4):465-476. PubMed ID: 29235907 [TBL] [Abstract][Full Text] [Related]
32. Development and performance of a sleep estimation algorithm using a single accelerometer placed on the thigh: an evaluation against polysomnography. Johansson PJ; Crowley P; Axelsson J; Franklin K; Garde AH; Hettiarachchi P; Holtermann A; Kecklund G; Lindberg E; Ljunggren M; Stamatakis E; Theorell Haglöw J; Svartengren M J Sleep Res; 2023 Apr; 32(2):e13725. PubMed ID: 36167935 [TBL] [Abstract][Full Text] [Related]
33. Validity of a commercial wearable sleep tracker in adult insomnia disorder patients and good sleepers. Kang SG; Kang JM; Ko KP; Park SC; Mariani S; Weng J J Psychosom Res; 2017 Jun; 97():38-44. PubMed ID: 28606497 [TBL] [Abstract][Full Text] [Related]
34. A novel adaptive wrist actigraphy algorithm for sleep-wake assessment in sleep apnea patients. Hedner J; Pillar G; Pittman SD; Zou D; Grote L; White DP Sleep; 2004 Dec; 27(8):1560-6. PubMed ID: 15683148 [TBL] [Abstract][Full Text] [Related]
35. Evaluation of a device-agnostic approach to predict sleep from raw accelerometry data collected by Apple Watch Series 7, Garmin Vivoactive 4, and ActiGraph GT9X Link in children with sleep disruptions. Weaver RG; de Zambotti M; White J; Finnegan O; Nelakuditi S; Zhu X; Burkart S; Beets M; Brown D; Pate RR; Welk GJ; Ghosal R; Wang Y; Armstrong B; Adams EL; Reesor-Oyer L; Pfledderer C; Dugger R; Bastyr M; von Klinggraeff L; Parker H Sleep Health; 2023 Aug; 9(4):417-429. PubMed ID: 37391280 [TBL] [Abstract][Full Text] [Related]
36. A novel machine learning unsupervised algorithm for sleep/wake identification using actigraphy. Li X; Zhang Y; Jiang F; Zhao H Chronobiol Int; 2020 Jul; 37(7):1002-1015. PubMed ID: 32342702 [TBL] [Abstract][Full Text] [Related]
37. Movement toward a novel activity monitoring device. Montgomery-Downs HE; Insana SP; Bond JA Sleep Breath; 2012 Sep; 16(3):913-7. PubMed ID: 21971963 [TBL] [Abstract][Full Text] [Related]
38. Design and validation of a computer-based sleep-scoring algorithm. Louis RP; Lee J; Stephenson R J Neurosci Methods; 2004 Feb; 133(1-2):71-80. PubMed ID: 14757347 [TBL] [Abstract][Full Text] [Related]
39. Sleep Measurement Using Wrist-Worn Accelerometer Data Compared with Polysomnography. Chase JD; Busa MA; Staudenmayer JW; Sirard JR Sensors (Basel); 2022 Jul; 22(13):. PubMed ID: 35808535 [TBL] [Abstract][Full Text] [Related]
40. Validity of Actigraphy in Measurement of Sleep in Young Adults With Type 1 Diabetes. Farabi SS; Quinn L; Carley DW J Clin Sleep Med; 2017 May; 13(5):669-674. PubMed ID: 28162146 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]