These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
223 related articles for article (PubMed ID: 35982701)
21. Melatonin-mediated nitric oxide improves tolerance to cadmium toxicity by reducing oxidative stress in wheat plants. Kaya C; Okant M; Ugurlar F; Alyemeni MN; Ashraf M; Ahmad P Chemosphere; 2019 Jun; 225():627-638. PubMed ID: 30901656 [TBL] [Abstract][Full Text] [Related]
22. Increased antioxidative capacity and decreased cadmium uptake contribute to hemin-induced alleviation of cadmium toxicity in Chinese cabbage seedlings. Zhu Z; Huang Y; Wu X; Liu Z; Zou J; Chen Y; Su N; Cui J Ecotoxicol Environ Saf; 2019 Aug; 177():47-57. PubMed ID: 30959312 [TBL] [Abstract][Full Text] [Related]
23. Comparative role of calcium oxide nanoparticles and calcium bulk fertilizer to alleviate cadmium toxicity by modulating oxidative stress, photosynthetic performance and antioxidant-defense genes expression in alfalfa. Hussan MU; Hussain S; Hafeez MB; Ahmed S; Hassan MU; Jabeen S; Yan M; Wang Q Plant Physiol Biochem; 2024 Oct; 215():109002. PubMed ID: 39106767 [TBL] [Abstract][Full Text] [Related]
24. Silicon assisted ameliorative effects of iron nanoparticles against cadmium stress: Attaining new equilibrium among physiochemical parameters, antioxidative machinery, and osmoregulators of Phaseolus lunatus. Ahmad A; Yasin NA; Khan WU; Akram W; Wang R; Shah AA; Akbar M; Ali A; Wu T Plant Physiol Biochem; 2021 Sep; 166():874-886. PubMed ID: 34237605 [TBL] [Abstract][Full Text] [Related]
25. Effects of malic acid and EDTA on oxidative stress and antioxidant enzymes of okra (Abelmoschus esculentus L.) exposed to cadmium stress. Mousavi A; Pourakbar L; Siavash Moghaddam S Ecotoxicol Environ Saf; 2022 Dec; 248():114320. PubMed ID: 36423373 [TBL] [Abstract][Full Text] [Related]
26. Insights into citric acid-induced cadmium tolerance and phytoremediation in Brassica juncea L.: Coordinated functions of metal chelation, antioxidant defense and glyoxalase systems. Mahmud JA; Hasanuzzaman M; Nahar K; Bhuyan MHMB; Fujita M Ecotoxicol Environ Saf; 2018 Jan; 147():990-1001. PubMed ID: 29976011 [TBL] [Abstract][Full Text] [Related]
27. Alleviation of cadmium accumulation in maize (Zea mays L.) by foliar spray of zinc oxide nanoparticles and biochar to contaminated soil. Rizwan M; Ali S; Zia Ur Rehman M; Adrees M; Arshad M; Qayyum MF; Ali L; Hussain A; Chatha SAS; Imran M Environ Pollut; 2019 May; 248():358-367. PubMed ID: 30818115 [TBL] [Abstract][Full Text] [Related]
28. Brassinosteroid Ameliorates Zinc Oxide Nanoparticles-Induced Oxidative Stress by Improving Antioxidant Potential and Redox Homeostasis in Tomato Seedling. Li M; Ahammed GJ; Li C; Bao X; Yu J; Huang C; Yin H; Zhou J Front Plant Sci; 2016; 7():615. PubMed ID: 27242821 [TBL] [Abstract][Full Text] [Related]
29. The endophytic bacterium Sphingomonas SaMR12 alleviates Cd stress in oilseed rape through regulation of the GSH-AsA cycle and antioxidative enzymes. Wang Q; Ge C; Xu S; Wu Y; Sahito ZA; Ma L; Pan F; Zhou Q; Huang L; Feng Y; Yang X BMC Plant Biol; 2020 Feb; 20(1):63. PubMed ID: 32028891 [TBL] [Abstract][Full Text] [Related]
30. Zinc oxide nanocatalyst mediates cadmium and lead toxicity tolerance mechanism by differential regulation of photosynthetic machinery and antioxidant enzymes level in cotton seedlings. N P; N G; T M; S V S; P V Toxicol Rep; 2021; 8():295-302. PubMed ID: 33552928 [TBL] [Abstract][Full Text] [Related]
32. Nanoparticles enhances the salinity toxicity tolerance in Linum usitatissimum L. by modulating the antioxidative enzymes, photosynthetic efficiency, redox status and cellular damage. Singh P; Arif Y; Siddiqui H; Sami F; Zaidi R; Azam A; Alam P; Hayat S Ecotoxicol Environ Saf; 2021 Apr; 213():112020. PubMed ID: 33592373 [TBL] [Abstract][Full Text] [Related]
33. Selenium nanoparticles reduced cadmium uptake, regulated nutritional homeostasis and antioxidative system in Coriandrum sativum grown in cadmium toxic conditions. Sardar R; Ahmed S; Shah AA; Yasin NA Chemosphere; 2022 Jan; 287(Pt 3):132332. PubMed ID: 34563771 [TBL] [Abstract][Full Text] [Related]
34. Foliar Sprayed Green Zinc Oxide Nanoparticles Mitigate Drought-Induced Oxidative Stress in Tomato. El-Zohri M; Al-Wadaani NA; Bafeel SO Plants (Basel); 2021 Nov; 10(11):. PubMed ID: 34834763 [TBL] [Abstract][Full Text] [Related]
35. Zinc Oxide Nanoparticles and Zinc Sulfate Alleviate Boron Toxicity in Cotton ( Nassarawa IS; Li Z; Xue L; Li H; Muhammad U; Zhu S; Chen J; Zhao T Plants (Basel); 2024 Apr; 13(9):. PubMed ID: 38732398 [TBL] [Abstract][Full Text] [Related]
36. [Effects of Nano-copper Oxide on Physiobiochemical Properties of Wang SQ; Sun YB; Huang QQ; Xu YM; Dong RY; Meng QY Huan Jing Ke Xue; 2023 Sep; 44(9):5204-5213. PubMed ID: 37699838 [TBL] [Abstract][Full Text] [Related]
37. Zinc and iron oxide nanoparticles improved the plant growth and reduced the oxidative stress and cadmium concentration in wheat. Rizwan M; Ali S; Ali B; Adrees M; Arshad M; Hussain A; Zia Ur Rehman M; Waris AA Chemosphere; 2019 Jan; 214():269-277. PubMed ID: 30265934 [TBL] [Abstract][Full Text] [Related]
39. Treatment with salicylic acid decreases the effect of cadmium on photosynthesis in maize plants. Krantev A; Yordanova R; Janda T; Szalai G; Popova L J Plant Physiol; 2008 Jun; 165(9):920-31. PubMed ID: 17913285 [TBL] [Abstract][Full Text] [Related]
40. Jointed toxicity of TiO Ji Y; Zhou Y; Ma C; Feng Y; Hao Y; Rui Y; Wu W; Gui X; Le VN; Han Y; Wang Y; Xing B; Liu L; Cao W Plant Physiol Biochem; 2017 Jan; 110():82-93. PubMed ID: 27193349 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]