These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

159 related articles for article (PubMed ID: 35982784)

  • 41. Predicting domain-domain interaction based on domain profiles with feature selection and support vector machines.
    González AJ; Liao L
    BMC Bioinformatics; 2010 Oct; 11():537. PubMed ID: 21034480
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Predicting drug-target interaction network using deep learning model.
    You J; McLeod RD; Hu P
    Comput Biol Chem; 2019 Jun; 80():90-101. PubMed ID: 30939415
    [TBL] [Abstract][Full Text] [Related]  

  • 43. RNA-binding protein recognition based on multi-view deep feature and multi-label learning.
    Yang H; Deng Z; Pan X; Shen HB; Choi KS; Wang L; Wang S; Wu J
    Brief Bioinform; 2021 May; 22(3):. PubMed ID: 32808039
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Predicting direct and indirect non-target impacts of biocontrol agents using machine-learning approaches.
    Kotula HJ; Peralta G; Frost CM; Todd JH; Tylianakis JM
    PLoS One; 2021; 16(6):e0252448. PubMed ID: 34061885
    [TBL] [Abstract][Full Text] [Related]  

  • 45. An efficient computational method for predicting drug-target interactions using weighted extreme learning machine and speed up robot features.
    An JY; Meng FR; Yan ZJ
    BioData Min; 2021 Jan; 14(1):3. PubMed ID: 33472664
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Predicting the helix-helix interactions from correlated residue mutations.
    Xiong D; Mao W; Gong H
    Proteins; 2017 Dec; 85(12):2162-2169. PubMed ID: 28833538
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Phylesystem: a git-based data store for community-curated phylogenetic estimates.
    McTavish EJ; Hinchliff CE; Allman JF; Brown JW; Cranston KA; Holder MT; Rees JA; Smith SA
    Bioinformatics; 2015 Sep; 31(17):2794-800. PubMed ID: 25940563
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Neuro-symbolic representation learning on biological knowledge graphs.
    Alshahrani M; Khan MA; Maddouri O; Kinjo AR; Queralt-Rosinach N; Hoehndorf R
    Bioinformatics; 2017 Sep; 33(17):2723-2730. PubMed ID: 28449114
    [TBL] [Abstract][Full Text] [Related]  

  • 49. ATGPred-FL: sequence-based prediction of autophagy proteins with feature representation learning.
    Jiao S; Chen Z; Zhang L; Zhou X; Shi L
    Amino Acids; 2022 May; 54(5):799-809. PubMed ID: 35286461
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Trader as a new optimization algorithm predicts drug-target interactions efficiently.
    Masoudi-Sobhanzadeh Y; Omidi Y; Amanlou M; Masoudi-Nejad A
    Sci Rep; 2019 Jun; 9(1):9348. PubMed ID: 31249365
    [TBL] [Abstract][Full Text] [Related]  

  • 51. An interpretable machine learning method for homo-trimeric protein interface residue-residue interaction prediction.
    Hong Z; Liu J; Chen Y
    Biophys Chem; 2021 Nov; 278():106666. PubMed ID: 34418678
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Mycorrhiza: genotype assignment using phylogenetic networks.
    Georges-Filteau J; Hamelin RC; Blanchette M
    Bioinformatics; 2020 Jan; 36(1):212-220. PubMed ID: 31197316
    [TBL] [Abstract][Full Text] [Related]  

  • 53. PyPredT6: A python-based prediction tool for identification of Type VI effector proteins.
    Sen R; Nayak L; De RK
    J Bioinform Comput Biol; 2019 Jun; 17(3):1950019. PubMed ID: 31288641
    [TBL] [Abstract][Full Text] [Related]  

  • 54. SumSec: Accurate Prediction of Sumoylation Sites Using Predicted Secondary Structure.
    Dehzangi A; López Y; Taherzadeh G; Sharma A; Tsunoda T
    Molecules; 2018 Dec; 23(12):. PubMed ID: 30544729
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Predicting host taxonomic information from viral genomes: A comparison of feature representations.
    Young F; Rogers S; Robertson DL
    PLoS Comput Biol; 2020 May; 16(5):e1007894. PubMed ID: 32453718
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Phylogenetic tree information aids supervised learning for predicting protein-protein interaction based on distance matrices.
    Craig RA; Liao L
    BMC Bioinformatics; 2007 Jan; 8():6. PubMed ID: 17212819
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Onto2Vec: joint vector-based representation of biological entities and their ontology-based annotations.
    Smaili FZ; Gao X; Hoehndorf R
    Bioinformatics; 2018 Jul; 34(13):i52-i60. PubMed ID: 29949999
    [TBL] [Abstract][Full Text] [Related]  

  • 58. iLearnPlus: a comprehensive and automated machine-learning platform for nucleic acid and protein sequence analysis, prediction and visualization.
    Chen Z; Zhao P; Li C; Li F; Xiang D; Chen YZ; Akutsu T; Daly RJ; Webb GI; Zhao Q; Kurgan L; Song J
    Nucleic Acids Res; 2021 Jun; 49(10):e60. PubMed ID: 33660783
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Predicting protein-protein interactions between human and hepatitis C virus via an ensemble learning method.
    Emamjomeh A; Goliaei B; Zahiri J; Ebrahimpour R
    Mol Biosyst; 2014 Dec; 10(12):3147-54. PubMed ID: 25230581
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Multitask learning for host-pathogen protein interactions.
    Kshirsagar M; Carbonell J; Klein-Seetharaman J
    Bioinformatics; 2013 Jul; 29(13):i217-26. PubMed ID: 23812987
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.