These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
256 related articles for article (PubMed ID: 35983034)
41. SHP2 positively regulates TGFβ1-induced epithelial-mesenchymal transition modulated by its novel interacting protein Hook1. Li S; Wang L; Zhao Q; Liu Y; He L; Xu Q; Sun X; Teng L; Cheng H; Ke Y J Biol Chem; 2014 Dec; 289(49):34152-60. PubMed ID: 25331952 [TBL] [Abstract][Full Text] [Related]
42. Inhibitory Receptor Trap: A Platform for Discovery of Inhibitory Receptors That Utilize Inositol Lipid and Phosphotyrosine Phosphatase Effectors. Crute BW; Sheraden R; Ott VL; Harley ITW; Getahun A; Cambier JC Front Immunol; 2020; 11():592329. PubMed ID: 33193438 [TBL] [Abstract][Full Text] [Related]
43. [The Biological Function of SHP2 in Human Disease]. Li SM Mol Biol (Mosk); 2016; 50(1):27-33. PubMed ID: 27028808 [TBL] [Abstract][Full Text] [Related]
44. An allosteric interaction controls the activation mechanism of SHP2 tyrosine phosphatase. Anselmi M; Hub JS Sci Rep; 2020 Oct; 10(1):18530. PubMed ID: 33116231 [TBL] [Abstract][Full Text] [Related]
45. Counteracting effects operating on Src homology 2 domain-containing protein-tyrosine phosphatase 2 (SHP2) function drive selection of the recurrent Y62D and Y63C substitutions in Noonan syndrome. Martinelli S; Nardozza AP; Delle Vigne S; Sabetta G; Torreri P; Bocchinfuso G; Flex E; Venanzi S; Palleschi A; Gelb BD; Cesareni G; Stella L; Castagnoli L; Tartaglia M J Biol Chem; 2012 Aug; 287(32):27066-77. PubMed ID: 22711529 [TBL] [Abstract][Full Text] [Related]
46. Engineering SHP2 Phosphatase for Optical Control. Ryan A; Janosko CP; Courtney TM; Deiters A Biochemistry; 2022 Dec; 61(23):2687-2697. PubMed ID: 36346979 [TBL] [Abstract][Full Text] [Related]
47. Themis-associated phosphatase activity controls signaling in T cell development. Mehta M; Brzostek J; Chen EW; Tung DWH; Chen S; Sankaran S; Yap J; Rybakin V; Gascoigne NRJ Proc Natl Acad Sci U S A; 2018 Nov; 115(48):E11331-E11340. PubMed ID: 30413615 [TBL] [Abstract][Full Text] [Related]
48. Regulation of tyrosine phosphorylation in isolated T cell membrane by inhibition of protein tyrosine phosphatases. Jin YJ; Friedman J; Burakoff SJ J Immunol; 1998 Aug; 161(4):1743-50. PubMed ID: 9712039 [TBL] [Abstract][Full Text] [Related]
49. Loss of Src homology region 2 domain-containing protein tyrosine phosphatase-1 increases CD8+ T cell-APC conjugate formation and is associated with enhanced in vivo CTL function. Sathish JG; Dolton G; Leroy FG; Matthews RJ J Immunol; 2007 Jan; 178(1):330-7. PubMed ID: 17182570 [TBL] [Abstract][Full Text] [Related]
50. Probing the Immunoreceptor Tyrosine-Based Inhibition Motif Interaction Protein Partners with Proteomics. Gao Y; Xing S; Hu L Molecules; 2024 Apr; 29(9):. PubMed ID: 38731468 [TBL] [Abstract][Full Text] [Related]
51. PD-L2 suppresses T cell signaling via coinhibitory microcluster formation and SHP2 phosphatase recruitment. Takehara T; Wakamatsu E; Machiyama H; Nishi W; Emoto K; Azuma M; Soejima K; Fukunaga K; Yokosuka T Commun Biol; 2021 May; 4(1):581. PubMed ID: 33990697 [TBL] [Abstract][Full Text] [Related]
52. The pathogenic T42A mutation in SHP2 rewires the interaction specificity of its N-terminal regulatory domain. van Vlimmeren AE; Voleti R; Chartier CA; Jiang Z; Karandur D; Humphries PA; Lo WL; Shah NH Proc Natl Acad Sci U S A; 2024 Jul; 121(30):e2407159121. PubMed ID: 39012820 [TBL] [Abstract][Full Text] [Related]
53. CTLA-4 suppresses proximal TCR signaling in resting human CD4(+) T cells by inhibiting ZAP-70 Tyr(319) phosphorylation: a potential role for tyrosine phosphatases. Guntermann C; Alexander DR J Immunol; 2002 May; 168(9):4420-9. PubMed ID: 11970985 [TBL] [Abstract][Full Text] [Related]
54. Regulation of T cell receptor signaling by tyrosine phosphatase SYP association with CTLA-4. Marengère LE; Waterhouse P; Duncan GS; Mittrücker HW; Feng GS; Mak TW Science; 1996 May; 272(5265):1170-3. PubMed ID: 8638161 [TBL] [Abstract][Full Text] [Related]
55. Cutting edge: the tyrosine phosphatase SHP-1 regulates thymocyte positive selection. Plas DR; Williams CB; Kersh GJ; White LS; White JM; Paust S; Ulyanova T; Allen PM; Thomas ML J Immunol; 1999 May; 162(10):5680-4. PubMed ID: 10229799 [TBL] [Abstract][Full Text] [Related]
56. Exploring the Allosteric Mechanism of Src Homology-2 Domain-Containing Protein Tyrosine Phosphatase 2 (SHP2) by Molecular Dynamics Simulations. Wang Q; Zhao WC; Fu XQ; Zheng QC Front Chem; 2020; 8():597495. PubMed ID: 33330386 [TBL] [Abstract][Full Text] [Related]
57. Morphogenetic movements at gastrulation require the SH2 tyrosine phosphatase Shp2. Saxton TM; Pawson T Proc Natl Acad Sci U S A; 1999 Mar; 96(7):3790-5. PubMed ID: 10097116 [TBL] [Abstract][Full Text] [Related]
58. Structural mechanism associated with domain opening in gain-of-function mutations in SHP2 phosphatase. Darian E; Guvench O; Yu B; Qu CK; MacKerell AD Proteins; 2011 May; 79(5):1573-88. PubMed ID: 21365683 [TBL] [Abstract][Full Text] [Related]
59. A specific amino acid context in EGFR and HER2 phosphorylation sites enables selective binding to the active site of Src homology phosphatase 2 (SHP2). Hartman Z; Geldenhuys WJ; Agazie YM J Biol Chem; 2020 Mar; 295(11):3563-3575. PubMed ID: 32024694 [TBL] [Abstract][Full Text] [Related]
60. Absence of CTLA-4 lowers the activation threshold of primed CD8+ TCR-transgenic T cells: lack of correlation with Src homology domain 2-containing protein tyrosine phosphatase. Gajewski TF; Fallarino F; Fields PE; Rivas F; Alegre ML J Immunol; 2001 Mar; 166(6):3900-7. PubMed ID: 11238634 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]