These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

188 related articles for article (PubMed ID: 35983101)

  • 1. Karyotype engineering reveals spatio-temporal control of replication firing and gene contacts.
    Lazar-Stefanita L; Luo J; Montagne R; Thierry A; Sun X; Mercy G; Mozziconacci J; Koszul R; Boeke JD
    Cell Genom; 2022 Aug; 2(8):None. PubMed ID: 35983101
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Behavior of replication origins in Eukaryota - spatio-temporal dynamics of licensing and firing.
    Musiałek MW; Rybaczek D
    Cell Cycle; 2015; 14(14):2251-64. PubMed ID: 26030591
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A three-dimensional model of the yeast genome.
    Duan Z; Andronescu M; Schutz K; McIlwain S; Kim YJ; Lee C; Shendure J; Fields S; Blau CA; Noble WS
    Nature; 2010 May; 465(7296):363-7. PubMed ID: 20436457
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nuclear organization in crucifer genomes: nucleolus-associated telomere clustering is not a universal interphase configuration in Brassicaceae.
    Shan W; Kubová M; Mandáková T; Lysak MA
    Plant J; 2021 Oct; 108(2):528-540. PubMed ID: 34390055
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Orc4 spatiotemporally stabilizes centromeric chromatin.
    Sreekumar L; Kumari K; Guin K; Bakshi A; Varshney N; Thimmappa BC; Narlikar L; Padinhateeri R; Siddharthan R; Sanyal K
    Genome Res; 2021 Apr; 31(4):607-621. PubMed ID: 33514624
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Meiotic nuclear reorganization: switching the position of centromeres and telomeres in the fission yeast Schizosaccharomyces pombe.
    Chikashige Y; Ding DQ; Imai Y; Yamamoto M; Haraguchi T; Hiraoka Y
    EMBO J; 1997 Jan; 16(1):193-202. PubMed ID: 9009280
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Hi-C analysis of genomic contacts revealed karyotype abnormalities in chicken HD3 cell line.
    Maslova A; Plotnikov V; Nuriddinov M; Gridina M; Fishman V; Krasikova A
    BMC Genomics; 2023 Feb; 24(1):66. PubMed ID: 36750787
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Absence of yKu/Hdf1 but not myosin-like proteins alters chromosome dynamics during prophase I in yeast.
    Scherthan H; Trelles-Sticken E
    Differentiation; 2008 Jan; 76(1):91-8. PubMed ID: 17697124
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Loss of centromere function drives karyotype evolution in closely related
    Sankaranarayanan SR; Ianiri G; Coelho MA; Reza MH; Thimmappa BC; Ganguly P; Vadnala RN; Sun S; Siddharthan R; Tellgren-Roth C; Dawson TL; Heitman J; Sanyal K
    Elife; 2020 Jan; 9():. PubMed ID: 31958060
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Detailed molecular cytogenetic characterisation of the myeloid cell line U937 reveals the fate of homologous chromosomes and shows that centromere capture is a feature of genome instability.
    MacKinnon RN; Peverall J; Campbell LJ; Wall M
    Mol Cytogenet; 2020 Dec; 13(1):50. PubMed ID: 33317567
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The birth of the centromere.
    Villasante A; Méndez-Lago M; Abad JP; Montejo de Garcíni E
    Cell Cycle; 2007 Dec; 6(23):2872-6. PubMed ID: 18156801
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Shelterin components mediate genome reorganization in response to replication stress.
    Mizuguchi T; Taneja N; Matsuda E; Belton JM; FitzGerald P; Dekker J; Grewal SIS
    Proc Natl Acad Sci U S A; 2017 May; 114(21):5479-5484. PubMed ID: 28490498
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Centromeres: From chromosome biology to biotechnology applications and synthetic genomes in plants.
    Zhou J; Liu Y; Guo X; Birchler JA; Han F; Su H
    Plant Biotechnol J; 2022 Nov; 20(11):2051-2063. PubMed ID: 35722725
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Reorganization of chromosome architecture in replicative cellular senescence.
    Criscione SW; De Cecco M; Siranosian B; Zhang Y; Kreiling JA; Sedivy JM; Neretti N
    Sci Adv; 2016 Feb; 2(2):e1500882. PubMed ID: 26989773
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Implications of the Evolutionary Trajectory of Centromeres in the Fungal Kingdom.
    Guin K; Sreekumar L; Sanyal K
    Annu Rev Microbiol; 2020 Sep; 74():835-853. PubMed ID: 32706633
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Rif1 regulates initiation timing of late replication origins throughout the S. cerevisiae genome.
    Peace JM; Ter-Zakarian A; Aparicio OM
    PLoS One; 2014; 9(5):e98501. PubMed ID: 24879017
    [TBL] [Abstract][Full Text] [Related]  

  • 17. DNA replication and chromosome positioning throughout the interphase in three-dimensional space of plant nuclei.
    Němečková A; Koláčková V; Vrána J; Doležel J; Hřibová E
    J Exp Bot; 2020 Oct; 71(20):6262-6272. PubMed ID: 32805034
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Early replication of short telomeres in budding yeast.
    Bianchi A; Shore D
    Cell; 2007 Mar; 128(6):1051-62. PubMed ID: 17382879
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mitotic Nuclear Envelope Breakdown and Spindle Nucleation Are Controlled by Interphase Contacts between Centromeres and the Nuclear Envelope.
    Fernández-Álvarez A; Bez C; O'Toole ET; Morphew M; Cooper JP
    Dev Cell; 2016 Dec; 39(5):544-559. PubMed ID: 27889481
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Generation of an approximately 2.4 Mb human X centromere-based minichromosome by targeted telomere-associated chromosome fragmentation in DT40.
    Mills W; Critcher R; Lee C; Farr CJ
    Hum Mol Genet; 1999 May; 8(5):751-61. PubMed ID: 10196364
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.