BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

175 related articles for article (PubMed ID: 35983312)

  • 1. Structure and Interaction of Ceramide-Containing Liposomes with Gold Nanoparticles as Characterized by SERS and Cryo-EM.
    Feng Y; Kochovski Z; Arenz C; Lu Y; Kneipp J
    J Phys Chem C Nanomater Interfaces; 2022 Aug; 126(31):13237-13246. PubMed ID: 35983312
    [TBL] [Abstract][Full Text] [Related]  

  • 2. SERS and Cryo-EM Directly Reveal Different Liposome Structures during Interaction with Gold Nanoparticles.
    Živanović V; Kochovski Z; Arenz C; Lu Y; Kneipp J
    J Phys Chem Lett; 2018 Dec; 9(23):6767-6772. PubMed ID: 30421928
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Molecular Structure and Interactions of Lipids in the Outer Membrane of Living Cells Based on Surface-Enhanced Raman Scattering and Liposome Models.
    Živanović V; Milewska A; Leosson K; Kneipp J
    Anal Chem; 2021 Jul; 93(29):10106-10113. PubMed ID: 34264630
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Impact of the ceramide subspecies on the nanostructure of stratum corneum lipids using neutron scattering and molecular dynamics simulations. Part I: impact of CER[NS].
    Schmitt T; Gupta R; Lange S; Sonnenberger S; Dobner B; Hauß T; Rai B; Neubert RHH
    Chem Phys Lipids; 2018 Aug; 214():58-68. PubMed ID: 29859142
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Surface enhanced Raman spectroscopy of self-assembled layers of lipid molecules on nanostructured Au and Ag substrates.
    Slekiene N; Ramanauskaite L; Snitka V
    Chem Phys Lipids; 2017 Mar; 203():12-18. PubMed ID: 28069393
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Undulating tubular liposomes through incorporation of a synthetic skin ceramide into phospholipid bilayers.
    Xu P; Tan G; Zhou J; He J; Lawson LB; McPherson GL; John VT
    Langmuir; 2009 Sep; 25(18):10422-5. PubMed ID: 19694462
    [TBL] [Abstract][Full Text] [Related]  

  • 7. SERS Probing of Proteins in Gold Nanoparticle Agglomerates.
    Szekeres GP; Kneipp J
    Front Chem; 2019; 7():30. PubMed ID: 30766868
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Raman spectroscopic studies of dimyristoylphosphatidic acid and its interactions with ferricytochrome c in cationic binary and ternary lipid-protein complexes.
    Vincent JS; Levin IW
    Biophys J; 1991 May; 59(5):1007-21. PubMed ID: 1651120
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Glucosamine to gold nanoparticles binding studied using Raman spectroscopy.
    Mohaček-Grošev V; Brljafa S; Škrabić M; Marić I; Blažek Bregović V; Amendola V; Ropret P; Kvaček Blažević A
    Spectrochim Acta A Mol Biomol Spectrosc; 2022 Jan; 264():120326. PubMed ID: 34481250
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Spectroscopic Study of the Interaction of Carboxyl-Modified Gold Nanoparticles with Liposomes of Different Chain Lengths and Controlled Drug Release by Layer-by-Layer Technology.
    Kanwa N; De SK; Adhikari C; Chakraborty A
    J Phys Chem B; 2017 Dec; 121(50):11333-11343. PubMed ID: 29148780
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dual-Mode Dark Field and Surface-Enhanced Raman Scattering Liposomes for Lymphoma and Leukemia Cell Imaging.
    Ip S; MacLaughlin CM; Joseph M; Mullaithilaga N; Yang G; Wang C; Walker GC
    Langmuir; 2019 Feb; 35(5):1534-1543. PubMed ID: 30350697
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Formation and finite element analysis of tethered bilayer lipid structures.
    Kwak KJ; Valincius G; Liao WC; Hu X; Wen X; Lee A; Yu B; Vanderah DJ; Lu W; Lee LJ
    Langmuir; 2010 Dec; 26(23):18199-208. PubMed ID: 20977245
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Silica-void-gold nanoparticles: temporally stable surface-enhanced Raman scattering substrates.
    Roca M; Haes AJ
    J Am Chem Soc; 2008 Oct; 130(43):14273-9. PubMed ID: 18831552
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Adenosine Triphosphate-Encapsulated Liposomes with Plasmonic Nanoparticles for Surface Enhanced Raman Scattering-Based Immunoassays.
    Pham XH; Hahm E; Kim TH; Kim HM; Lee SH; Lee YS; Jeong DH; Jun BH
    Sensors (Basel); 2017 Jun; 17(7):. PubMed ID: 28644380
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Optical Nanosensing of Lipid Accumulation due to Enzyme Inhibition in Live Cells.
    Živanović V; Seifert S; Drescher D; Schrade P; Werner S; Guttmann P; Szekeres GP; Bachmann S; Schneider G; Arenz C; Kneipp J
    ACS Nano; 2019 Aug; 13(8):9363-9375. PubMed ID: 31314989
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Phospholipid Encapsulated AuNR@Ag/Au Nanosphere SERS Tags with Environmental Stimulus Responsive Signal Property.
    Su X; Wang Y; Wang W; Sun K; Chen L
    ACS Appl Mater Interfaces; 2016 Apr; 8(16):10201-11. PubMed ID: 27052206
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fragmentation of Proteins in the Corona of Gold Nanoparticles As Observed in Live Cell Surface-Enhanced Raman Scattering.
    Szekeres GP; Montes-Bayón M; Bettmer J; Kneipp J
    Anal Chem; 2020 Jun; 92(12):8553-8560. PubMed ID: 32420733
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An overview of sphingolipid metabolism: from synthesis to breakdown.
    Gault CR; Obeid LM; Hannun YA
    Adv Exp Med Biol; 2010; 688():1-23. PubMed ID: 20919643
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Recent developments on gold nanostructures for surface enhanced Raman spectroscopy: Particle shape, substrates and analytical applications. A review.
    López-Lorente ÁI
    Anal Chim Acta; 2021 Jul; 1168():338474. PubMed ID: 34051992
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of ceramide N-acyl chain and polar headgroup structure on the properties of ordered lipid domains (lipid rafts).
    Megha ; Sawatzki P; Kolter T; Bittman R; London E
    Biochim Biophys Acta; 2007 Sep; 1768(9):2205-12. PubMed ID: 17574203
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.