BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 35983646)

  • 21. Evidences for circadian rhythmicity in the per0 mutant of Drosophila melanogaster.
    Helfrich C; Engelmann W
    Z Naturforsch C J Biosci; 1987; 42(11-12):1335-8. PubMed ID: 2966505
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Feeding is not a more potent Zeitgeber than the light-dark cycle in Drosophila.
    Oishi K; Shiota M; Sakamoto K; Kasamatsu M; Ishida N
    Neuroreport; 2004 Mar; 15(4):739-43. PubMed ID: 15094488
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Daily temperature cycles prolong lifespan and have sex-specific effects on peripheral clock gene expression in Drosophila melanogaster.
    Goh GH; Blache D; Mark PJ; Kennington WJ; Maloney SK
    J Exp Biol; 2021 May; 224(10):. PubMed ID: 33758022
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Clock accuracy and precision evolve as a consequence of selection for adult emergence in a narrow window of time in fruit flies Drosophila melanogaster.
    Kannan NN; Vaze KM; Sharma VK
    J Exp Biol; 2012 Oct; 215(Pt 20):3527-34. PubMed ID: 22811242
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Entrainment of eclosion rhythm in Drosophila melanogaster populations reared for more than 700 generations in constant light environment.
    Paranjpe DA; Anitha D; Kumar S; Kumar D; Verkhedkar K; Chandrashekaran MK; Joshi A; Sharma VK
    Chronobiol Int; 2003 Nov; 20(6):977-87. PubMed ID: 14680138
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Temperature effect on entrainment, phase shifting, and amplitude of circadian clocks and its molecular bases.
    Rensing L; Ruoff P
    Chronobiol Int; 2002 Sep; 19(5):807-64. PubMed ID: 12405549
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Pigment-dispersing factor is involved in age-dependent rhythm changes in Drosophila melanogaster.
    Umezaki Y; Yoshii T; Kawaguchi T; Helfrich-Förster C; Tomioka K
    J Biol Rhythms; 2012 Dec; 27(6):423-32. PubMed ID: 23223368
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Responses of activity rhythms to temperature cues evolve in
    Abhilash L; Kalliyil A; Sheeba V
    J Exp Biol; 2020 Jun; 223(Pt 11):. PubMed ID: 32291322
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The Timed Depolarization of Morning and Evening Oscillators Phase Shifts the Circadian Clock of Drosophila.
    Eck S; Helfrich-Förster C; Rieger D
    J Biol Rhythms; 2016 Oct; 31(5):428-42. PubMed ID: 27269519
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Social synchronization of circadian locomotor activity rhythm in the fruit fly Drosophila melanogaster.
    Lone SR; Sharma VK
    J Exp Biol; 2011 Nov; 214(Pt 22):3742-50. PubMed ID: 22031738
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Behavior in light-dark cycles of Drosophila mutants that are arrhythmic, blind, or both.
    Wheeler DA; Hamblen-Coyle MJ; Dushay MS; Hall JC
    J Biol Rhythms; 1993; 8(1):67-94. PubMed ID: 8490212
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Central and Peripheral Clock Control of Circadian Feeding Rhythms.
    Fulgham CV; Dreyer AP; Nasseri A; Miller AN; Love J; Martin MM; Jabr DA; Saurabh S; Cavanaugh DJ
    J Biol Rhythms; 2021 Dec; 36(6):548-566. PubMed ID: 34547954
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Paradoxical masking effects of bright photophase and high temperature in Drosophila malerkotliana.
    Sharma S; Thakurdas P; Sinam B; Joshi D
    Chronobiol Int; 2012 Mar; 29(2):157-65. PubMed ID: 22324554
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Phase control of ultradian feeding rhythms in the common vole (Microtus arvalis): the roles of light and the circadian system.
    Gerkema MP; Daan S; Wilbrink M; Hop MW; van der Leest F
    J Biol Rhythms; 1993; 8(2):151-71. PubMed ID: 8369551
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Environmental cycles regulate development time via circadian clock mediated gating of adult emergence.
    Srivastava M; James A; Varma V; Sharma VK; Sheeba V
    BMC Dev Biol; 2018 Dec; 18(1):21. PubMed ID: 30577765
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Thermocyclic and photocyclic entrainment of circadian locomotor activity rhythms in sleepy lizards, Tiliqua rugosa.
    Ellis DJ; Firth BT; Belan I
    Chronobiol Int; 2009 Oct; 26(7):1369-88. PubMed ID: 19916837
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Dopamine D2 receptor as a cellular component controlling nocturnal hyperactivities in Drosophila melanogaster.
    Lee G; Kikuno K; Bahn JH; Kim KM; Park JH
    Chronobiol Int; 2013 May; 30(4):443-59. PubMed ID: 23286280
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Circadian clock of Drosophila montana is adapted to high variation in summer day lengths and temperatures prevailing at high latitudes.
    Kauranen H; Ala-Honkola O; Kankare M; Hoikkala A
    J Insect Physiol; 2016 Jun; 89():9-18. PubMed ID: 26993661
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Octopamine mediates starvation-induced hyperactivity in adult Drosophila.
    Yang Z; Yu Y; Zhang V; Tian Y; Qi W; Wang L
    Proc Natl Acad Sci U S A; 2015 Apr; 112(16):5219-24. PubMed ID: 25848004
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Loss of Drosophila melanogaster TRPA1 Function Affects "Siesta" Behavior but Not Synchronization to Temperature Cycles.
    Roessingh S; Wolfgang W; Stanewsky R
    J Biol Rhythms; 2015 Dec; 30(6):492-505. PubMed ID: 26459465
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.