BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

207 related articles for article (PubMed ID: 35983909)

  • 1. Lattice thermal conductivity of Janus MoSSe and WSSe monolayers.
    Qin H; Ren K; Zhang G; Dai Y; Zhang G
    Phys Chem Chem Phys; 2022 Aug; 24(34):20437-20444. PubMed ID: 35983909
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Phonon transport in Janus monolayer MoSSe: a first-principles study.
    Guo SD
    Phys Chem Chem Phys; 2018 Mar; 20(10):7236-7242. PubMed ID: 29484328
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Excitonic Dynamics in Janus MoSSe and WSSe Monolayers.
    Zheng T; Lin YC; Yu Y; Valencia-Acuna P; Puretzky AA; Torsi R; Liu C; Ivanov IN; Duscher G; Geohegan DB; Ni Z; Xiao K; Zhao H
    Nano Lett; 2021 Jan; 21(2):931-937. PubMed ID: 33405934
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ultralow thermal conductivity of W-Janus bilayers (WXY: X, Y = S, Se, and Te) for thermoelectric devices.
    Sharma NK; Mahajan V; Adhikari R; Sharma H
    Nanoscale; 2024 Feb; 16(6):3091-3100. PubMed ID: 38251395
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Room Temperature Bound Excitons and Strain-Tunable Carrier Mobilities in Janus Monolayer Transition-Metal Dichalcogenides.
    Hou B; Zhang Y; Zhang H; Shao H; Ma C; Zhang X; Chen Y; Xu K; Ni G; Zhu H
    J Phys Chem Lett; 2020 Apr; 11(8):3116-3128. PubMed ID: 32220211
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mechanical Behaviors in Janus Transition-Metal Dichalcogenides: A Molecular Dynamics Simulation.
    Yang F; Shang J; Kou L; Li C; Deng Z
    Nanomaterials (Basel); 2022 Jun; 12(11):. PubMed ID: 35683765
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Electronic and optical properties of two-dimensional heterostructures based on Janus XSSe (X = Mo, W) and Mg(OH)
    Lou J; Ren K; Huang Z; Huo W; Zhu Z; Yu J
    RSC Adv; 2021 Sep; 11(47):29576-29584. PubMed ID: 35479544
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Electronic and magnetic properties of the Janus MoSSe/WSSe superlattice nanoribbon: a first-principles study.
    Yu L; Sun S; Ye X
    Phys Chem Chem Phys; 2020 Jan; 22(4):2498-2508. PubMed ID: 31939967
    [TBL] [Abstract][Full Text] [Related]  

  • 9. First-principles investigation of potential water-splitting photocatalysts and photovoltaic materials based on Janus transition-metal dichalcogenide/WSe
    Ayele ST; Obodo KO; Asres GA
    RSC Adv; 2022 Nov; 12(49):31518-31524. PubMed ID: 36380918
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Computational Study of Janus Transition Metal Dichalcogenide Monolayers for Acetone Gas Sensing.
    Yeh CH
    ACS Omega; 2020 Dec; 5(48):31398-31406. PubMed ID: 33324851
    [TBL] [Abstract][Full Text] [Related]  

  • 11. High Thermoelectric Performance in Two-Dimensional Janus Monolayer Material WS-X (
    Patel A; Singh D; Sonvane Y; Thakor PB; Ahuja R
    ACS Appl Mater Interfaces; 2020 Oct; 12(41):46212-46219. PubMed ID: 32931245
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ultrahigh sensitivity with excellent recovery time for NH
    Chaurasiya R; Dixit A
    Phys Chem Chem Phys; 2020 Jul; 22(25):13903-13922. PubMed ID: 32542298
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The mirror asymmetry induced nontrivial properties of polar WSSe/MoSSe heterostructures.
    Wang Y; Wei W; Huang B; Dai Y
    J Phys Condens Matter; 2019 Mar; 31(12):125003. PubMed ID: 30654357
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Nanoscrolls of Janus Monolayer Transition Metal Dichalcogenides.
    Kaneda M; Zhang W; Liu Z; Gao Y; Maruyama M; Nakanishi Y; Nakajo H; Aoki S; Honda K; Ogawa T; Hashimoto K; Endo T; Aso K; Chen T; Oshima Y; Yamada-Takamura Y; Takahashi Y; Okada S; Kato T; Miyata Y
    ACS Nano; 2024 Jan; 18(4):2772-2781. PubMed ID: 38230852
    [TBL] [Abstract][Full Text] [Related]  

  • 15. NO
    Ju L; Tang X; Li X; Liu B; Qiao X; Wang Z; Yin H
    Molecules; 2023 Feb; 28(4):. PubMed ID: 36838632
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Electronic and Optical Properties of Pristine and Vertical and Lateral Heterostructures of Janus MoSSe and WSSe.
    Li F; Wei W; Zhao P; Huang B; Dai Y
    J Phys Chem Lett; 2017 Dec; 8(23):5959-5965. PubMed ID: 29169238
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Janus 2H-MXTe (M = Zr, Hf; X = S, Se) monolayers with outstanding thermoelectric properties and low lattice thermal conductivities.
    Lin YQ; Yang Q; Wang ZQ; Geng HY; Cheng Y
    Phys Chem Chem Phys; 2023 Nov; 25(45):31312-31325. PubMed ID: 37955953
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ultrahigh thermoelectric performance of Janus α-STe
    Liu G; Guo A; Cao F; Ju W; Wang Z; Wang H; Li GL; Gao Z
    Phys Chem Chem Phys; 2022 Nov; 24(46):28295-28305. PubMed ID: 36382798
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Enhanced thermoelectric performance of monolayer MoSSe, bilayer MoSSe and graphene/MoSSe heterogeneous nanoribbons.
    Deng S; Li L; Guy OJ; Zhang Y
    Phys Chem Chem Phys; 2019 Aug; 21(33):18161-18169. PubMed ID: 31389445
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Strong reduction of thermal conductivity of WSe
    Wang B; Yan X; Yan H; Cai Y
    Nanotechnology; 2022 Apr; 33(27):. PubMed ID: 35349994
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.