BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

198 related articles for article (PubMed ID: 35984428)

  • 21. Biologically Inspired Scaffolds for Heart Valve Tissue Engineering via Melt Electrowriting.
    Saidy NT; Wolf F; Bas O; Keijdener H; Hutmacher DW; Mela P; De-Juan-Pardo EM
    Small; 2019 Jun; 15(24):e1900873. PubMed ID: 31058444
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Melt Electrowriting of Thermoplastic Elastomers.
    Hochleitner G; Fürsattel E; Giesa R; Groll J; Schmidt HW; Dalton PD
    Macromol Rapid Commun; 2018 May; 39(10):e1800055. PubMed ID: 29656556
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Engineering Heart Valve Interfaces Using Melt Electrowriting: Biomimetic Design Strategies from Multi-Modal Imaging.
    Vernon MJ; Lu J; Padman B; Lamb C; Kent R; Mela P; Doyle B; Ihdayhid AR; Jansen S; Dilley RJ; De-Juan-Pardo EM
    Adv Healthc Mater; 2022 Dec; 11(24):e2201028. PubMed ID: 36300603
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Walking through trabecular meshwork biology: Toward engineering design of outflow physiology.
    Dautriche CN; Xie Y; Sharfstein ST
    Biotechnol Adv; 2014; 32(5):971-83. PubMed ID: 24806891
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Production of Scaffolds Using Melt Electrospinning Writing and Cell Seeding.
    Bolle ECL; Nicdao D; Dalton PD; Dargaville TR
    Methods Mol Biol; 2021; 2147():111-124. PubMed ID: 32840814
    [TBL] [Abstract][Full Text] [Related]  

  • 26. 3D printed high-resolution scaffold with hydrogel microfibers for providing excellent biocompatibility.
    Ye W; Xie C; Liu Y; He Y; Gao Q; Ouyang A
    J Biomater Appl; 2021 Jan; 35(6):633-642. PubMed ID: 32996360
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Melt electrowriting below the critical translation speed to fabricate crimped elastomer scaffolds with non-linear extension behaviour mimicking that of ligaments and tendons.
    Hochleitner G; Chen F; Blum C; Dalton PD; Amsden B; Groll J
    Acta Biomater; 2018 May; 72():110-120. PubMed ID: 29555458
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Bioengineered glaucomatous 3D human trabecular meshwork as an in vitro disease model.
    Torrejon KY; Papke EL; Halman JR; Stolwijk J; Dautriche CN; Bergkvist M; Danias J; Sharfstein ST; Xie Y
    Biotechnol Bioeng; 2016 Jun; 113(6):1357-68. PubMed ID: 26615056
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Tailored Melt Electrowritten Scaffolds for the Generation of Sheet-Like Tissue Constructs from Multicellular Spheroids.
    McMaster R; Hoefner C; Hrynevich A; Blum C; Wiesner M; Wittmann K; Dargaville TR; Bauer-Kreisel P; Groll J; Dalton PD; Blunk T
    Adv Healthc Mater; 2019 Apr; 8(7):e1801326. PubMed ID: 30835969
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Three-Dimensional Melt-Electrowritten Polycaprolactone/Chitosan Scaffolds Enhance Mesenchymal Stem Cell Behavior.
    Yoshida M; Turner PR; Ali MA; Cabral JD
    ACS Appl Bio Mater; 2021 Feb; 4(2):1319-1329. PubMed ID: 35014483
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Design and properties of 3D scaffolds for bone tissue engineering.
    Gómez S; Vlad MD; López J; Fernández E
    Acta Biomater; 2016 Sep; 42():341-350. PubMed ID: 27370904
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Engineering bone-forming biohybrid sheets through the integration of melt electrowritten membranes and cartilaginous microspheroids.
    Hall GN; Chandrakar A; Pastore A; Ioannidis K; Moisley K; Cirstea M; Geris L; Moroni L; Luyten FP; Wieringa P; Papantoniou I
    Acta Biomater; 2023 Jul; 165():111-124. PubMed ID: 36283613
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Fabrication and
    Tang X; Qin Y; Xu X; Guo D; Ye W; Wu W; Li R
    Biomed Res Int; 2019; 2019():2076138. PubMed ID: 31815125
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The Multiweek Thermal Stability of Medical-Grade Poly(ε-caprolactone) During Melt Electrowriting.
    Böhm C; Stahlhut P; Weichhold J; Hrynevich A; Teßmar J; Dalton PD
    Small; 2022 Jan; 18(3):e2104193. PubMed ID: 34741411
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Melt electrowriting reinforced composite membrane for controlled drug release.
    Xu T; Gu J; Meng J; Du L; Kumar A; Xu H
    J Mech Behav Biomed Mater; 2022 Aug; 132():105277. PubMed ID: 35617819
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Tailoring the pore design of embroidered structures by melt electrowriting to enhance the cell alignment in scaffold-based tendon reconstruction.
    von Witzleben M; Hahn J; Richter RF; de Freitas B; Steyer E; Schütz K; Vater C; Bernhardt A; Elschner C; Gelinsky M
    Biomater Adv; 2024 Jan; 156():213708. PubMed ID: 38029698
    [TBL] [Abstract][Full Text] [Related]  

  • 37. 4D Biofabrication Using a Combination of 3D Printing and Melt-Electrowriting of Shape-Morphing Polymers.
    Constante G; Apsite I; Alkhamis H; Dulle M; Schwarzer M; Caspari A; Synytska A; Salehi S; Ionov L
    ACS Appl Mater Interfaces; 2021 Mar; 13(11):12767-12776. PubMed ID: 33389997
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Polymers for Melt Electrowriting.
    Kade JC; Dalton PD
    Adv Healthc Mater; 2021 Jan; 10(1):e2001232. PubMed ID: 32940962
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Integrating melt electrowriting and inkjet bioprinting for engineering structurally organized articular cartilage.
    Dufour A; Gallostra XB; O'Keeffe C; Eichholz K; Von Euw S; Garcia O; Kelly DJ
    Biomaterials; 2022 Apr; 283():121405. PubMed ID: 35220017
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Fatigue behavior of As-built selective laser melted titanium scaffolds with sheet-based gyroid microarchitecture for bone tissue engineering.
    Kelly CN; Francovich J; Julmi S; Safranski D; Guldberg RE; Maier HJ; Gall K
    Acta Biomater; 2019 Aug; 94():610-626. PubMed ID: 31125727
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.