These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 35984714)

  • 1. Molybdenum Release Triggered by Dolomite Dissolution: Experimental Evidence and Conceptual Model.
    Koopmann S; Prommer H; Pichler T
    Environ Sci Technol; 2022 Sep; 56(17):12325-12335. PubMed ID: 35984714
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Molybdenum Mobility During Managed Aquifer Recharge in Carbonate Aquifers.
    Koopmann S; Prommer H; Siade A; Pichler T
    Environ Sci Technol; 2023 May; 57(19):7478-7489. PubMed ID: 37126233
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Geochemical Triggers of Arsenic Mobilization during Managed Aquifer Recharge.
    Fakhreddine S; Dittmar J; Phipps D; Dadakis J; Fendorf S
    Environ Sci Technol; 2015 Jul; 49(13):7802-9. PubMed ID: 26057865
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Reactive transport modeling of produced water disposal into dolomite saline aquifers: Controls of barium transport.
    Vilcáez J
    J Contam Hydrol; 2020 Aug; 233():103600. PubMed ID: 32679411
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Evaluation of conceptual and numerical models for arsenic mobilization and attenuation during managed aquifer recharge.
    Wallis I; Prommer H; Simmons CT; Post V; Stuyfzand PJ
    Environ Sci Technol; 2010 Jul; 44(13):5035-41. PubMed ID: 20518522
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mobilization of Arsenic and Other Naturally Occurring Contaminants during Managed Aquifer Recharge: A Critical Review.
    Fakhreddine S; Prommer H; Scanlon BR; Ying SC; Nicot JP
    Environ Sci Technol; 2021 Feb; 55(4):2208-2223. PubMed ID: 33503373
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Controlling Arsenic Mobilization during Managed Aquifer Recharge: The Role of Sediment Heterogeneity.
    Fakhreddine S; Prommer H; Gorelick SM; Dadakis J; Fendorf S
    Environ Sci Technol; 2020 Jul; 54(14):8728-8738. PubMed ID: 32516527
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mobilization of arsenic and other naturally occurring contaminants in groundwater of the Main Ethiopian Rift aquifers.
    Rango T; Vengosh A; Dwyer G; Bianchini G
    Water Res; 2013 Oct; 47(15):5801-18. PubMed ID: 23899878
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Spatial distribution patterns of molybdenum (Mo) concentrations in potable groundwater in Northern Jordan.
    Al Kuisi M; Al-Hwaiti M; Mashal K; Abed AM
    Environ Monit Assess; 2015 Mar; 187(3):148. PubMed ID: 25720968
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Process-Based and Probabilistic Quantification of Co and Ni Mobilization Risks Induced by Managed Aquifer Recharge.
    Vergara-Sáez C; Prommer H; Siade AJ; Sun J; Higginson S
    Environ Sci Technol; 2024 Apr; 58(17):7567-7576. PubMed ID: 38624010
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Deoxygenation Prevents Arsenic Mobilization during Deepwell Injection into Sulfide-Bearing Aquifers.
    Prommer H; Sun J; Helm L; Rathi B; Siade AJ; Morris R
    Environ Sci Technol; 2018 Dec; 52(23):13801-13810. PubMed ID: 30383366
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Influence of monsoonal recharge on arsenic and dissolved organic matter in the Holocene and Pleistocene aquifers of the Bengal Basin.
    Kulkarni HV; Mladenov N; Datta S; Chatterjee D
    Sci Total Environ; 2018 Oct; 637-638():588-599. PubMed ID: 29754092
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Introducing sequential managed aquifer recharge technology (SMART) - From laboratory to full-scale application.
    Regnery J; Wing AD; Kautz J; Drewes JE
    Chemosphere; 2016 Jul; 154():8-16. PubMed ID: 27037769
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Characteristics and processes of hydrogeochemical evolution induced by long-term mining activities in karst aquifers, southwestern China.
    Huang H; Chen Z; Wang T; Zhang L; Zhou G; Sun B; Wang Y
    Environ Sci Pollut Res Int; 2019 Oct; 26(29):30055-30068. PubMed ID: 31414390
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nutrient Removal during Stormwater Aquifer Storage and Recovery in an Anoxic Carbonate Aquifer.
    Vanderzalm JL; Page DW; Dillon PJ; Barry KE; Gonzalez D
    J Environ Qual; 2018 Mar; 47(1):276-286. PubMed ID: 29634793
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fluoride release from carbonate-rich fluorapatite during managed aquifer recharge: Model-based development of mitigation strategies.
    Schafer D; Sun J; Jamieson J; Siade A; Atteia O; Seibert S; Higginson S; Prommer H
    Water Res; 2021 Apr; 193():116880. PubMed ID: 33578057
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Geochemistry of redox-sensitive elements and sulfur isotopes in the high arsenic groundwater system of Datong Basin, China.
    Xie X; Ellis A; Wang Y; Xie Z; Duan M; Su C
    Sci Total Environ; 2009 Jun; 407(12):3823-35. PubMed ID: 19344934
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Model-Based Analysis of Reactive Transport Processes Governing Fluoride and Phosphate Release and Attenuation during Managed Aquifer Recharge.
    Schafer D; Sun J; Jamieson J; Siade AJ; Atteia O; Prommer H
    Environ Sci Technol; 2020 Mar; 54(5):2800-2811. PubMed ID: 32019298
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Arsenic release from Floridan Aquifer rock during incubations simulating aquifer storage and recovery operations.
    Jin J; Zimmerman AR; Norton SB; Annable MD; Harris WG
    Sci Total Environ; 2016 May; 551-552():238-45. PubMed ID: 26878636
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Multi-component transport and transformation in deep confined aquifer during groundwater artificial recharge.
    Zhang W; Huan Y; Yu X; Liu D; Zhou J
    J Environ Manage; 2015 Apr; 152():109-19. PubMed ID: 25617875
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.