These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
3. Diffusion-induced convective gas flow through the pores of the eggshell. Paganelli CV; Ar A; Rahn H J Exp Zool Suppl; 1987; 1():173-80. PubMed ID: 3598489 [TBL] [Abstract][Full Text] [Related]
4. Pores and gas exchange of avian eggs: a review. Rahn H; Paganelli CV; Ar A J Exp Zool Suppl; 1987; 1():165-72. PubMed ID: 3298530 [TBL] [Abstract][Full Text] [Related]
5. Eggshell conductance--Fick's or Stefan's law? Simkiss K Respir Physiol; 1986 Aug; 65(2):213-22. PubMed ID: 3764123 [TBL] [Abstract][Full Text] [Related]
6. Gas diffusion through non-tubular pores. Sibly RM; Simkiss K J Exp Zool Suppl; 1987; 1():187-91. PubMed ID: 3598491 [TBL] [Abstract][Full Text] [Related]
7. Role of diffusion in gas exchange of the avian egg. Rahn H; Paganelli C Fed Proc; 1982 Apr; 41(6):2134-6. PubMed ID: 6804272 [TBL] [Abstract][Full Text] [Related]
8. In vivo O2 and water vapor permeability of the hen's eggshell during early development. Ackerman RA; Rahn H Respir Physiol; 1981 Jul; 45(1):1-8. PubMed ID: 7280385 [TBL] [Abstract][Full Text] [Related]
9. Pores in avian eggshells: gas conductance, gas exchange and embryonic growth rate. Ar A; Rahn H Respir Physiol; 1985 Jul; 61(1):1-20. PubMed ID: 4035113 [TBL] [Abstract][Full Text] [Related]
10. Diffusion in the gas phase: the effects of ambient pressure and gas composition. Paganelli CV; Rahn AA; Wangensteen OD Respir Physiol; 1975 Dec; 25(3):247-58. PubMed ID: 1226462 [TBL] [Abstract][Full Text] [Related]
11. Gas exchange of the fertile hen's egg: components of resistance. Bissonnette JM; Metcalfe J Respir Physiol; 1978 Aug; 34(2):209-18. PubMed ID: 705081 [TBL] [Abstract][Full Text] [Related]
12. Regional differences in shell conductance and pore density of avian eggs. Rokitka MA; Rahn H Respir Physiol; 1987 Jun; 68(3):371-6. PubMed ID: 3616182 [TBL] [Abstract][Full Text] [Related]
13. Changes in eggshell conductance after transfer of hens from an altitude of 3,800 to 1,200 m. Rahn H; Ledoux T; Paganelli CV; Smith AH J Appl Physiol Respir Environ Exerc Physiol; 1982 Dec; 53(6):1429-31. PubMed ID: 7153140 [TBL] [Abstract][Full Text] [Related]
14. Oxygen and avian eggshell formation at high altitude. Hempleman SC; Adamson TP; Bebout DE Respir Physiol; 1993 Apr; 92(1):1-12. PubMed ID: 8511402 [TBL] [Abstract][Full Text] [Related]
16. Resistance of the shell membrane and mineral layer to diffusion of oxygen and water in flexible-shelled eggs of the snapping turtle (Chelydra serpentina). Feder ME; Satel SL; Gibbs AG Respir Physiol; 1982 Sep; 49(3):179-91. PubMed ID: 6890707 [TBL] [Abstract][Full Text] [Related]
17. CO2 and avian eggshell formation at high altitude. Hempleman SC; Powell FL; Adamson TP; Burger RE Respir Physiol; 1992 Jan; 87(1):1-10. PubMed ID: 1553444 [TBL] [Abstract][Full Text] [Related]
18. Micropores in the vitteline layer of the eggs of the dragonfly Oligoaeshna pryeri: a preliminary observation from the viewpoint of oxygen uptake. Koyama T; Takano H; Yokoyama T Adv Exp Med Biol; 2011; 701():307-10. PubMed ID: 21445802 [TBL] [Abstract][Full Text] [Related]
19. Regional differences in diffusive conductance/perfusion ratio in the shell of the hen's egg. Paganelli CV; Sotherland PR; Olszowka AJ; Rahn H Respir Physiol; 1988 Jan; 71(1):45-55. PubMed ID: 3124234 [TBL] [Abstract][Full Text] [Related]
20. The relation between stomatal aperture and gas exchange under consideration of pore geometry and diffusional resistance in the mesophyll. Kaiser H Plant Cell Environ; 2009 Aug; 32(8):1091-8. PubMed ID: 19422613 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]