BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

110 related articles for article (PubMed ID: 35985079)

  • 21. Quantifying Listeria monocytogenes prevalence and concentration in minced pork meat and estimating performance of three culture media from presence/absence microbiological testing using a deterministic and stochastic approach.
    Andritsos ND; Mataragas M; Paramithiotis S; Drosinos EH
    Food Microbiol; 2013 Dec; 36(2):395-405. PubMed ID: 24010622
    [TBL] [Abstract][Full Text] [Related]  

  • 22. [Thermal inactivation model of Listeria monocytogenes in ground beef].
    Feng X; Wang Q; Wang R; Chen Q; Su Y; Zhu R; Zhu L; Luo X
    Wei Sheng Wu Xue Bao; 2011 May; 51(5):684-91. PubMed ID: 21800632
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The COM-Poisson Process for Stochastic Modeling of Osmotic Inactivation Dynamics of
    Polese P; Del Torre M; Stecchini ML
    Front Microbiol; 2021; 12():681468. PubMed ID: 34305844
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Thermal inactivation and sublethal injury kinetics of Salmonella enterica and Listeria monocytogenes in broth versus agar surface.
    Wang X; Devlieghere F; Geeraerd A; Uyttendaele M
    Int J Food Microbiol; 2017 Feb; 243():70-77. PubMed ID: 28011300
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Bioinactivation: Software for modelling dynamic microbial inactivation.
    Garre A; Fernández PS; Lindqvist R; Egea JA
    Food Res Int; 2017 Mar; 93():66-74. PubMed ID: 28290281
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A quasi-chemical model for the growth and death of microorganisms in foods by non-thermal and high-pressure processing.
    Doona CJ; Feeherry FE; Ross EW
    Int J Food Microbiol; 2005 Apr; 100(1-3):21-32. PubMed ID: 15854689
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Individual and combined efficacies of mild heat and ultraviolet-c radiation against Escherichia coli O157:H7, Salmonella enterica, and Listeria monocytogenes in coconut liquid endosperm.
    Gabriel AA; Ostonal JM; Cristobal JO; Pagal GA; Armada JVE
    Int J Food Microbiol; 2018 Jul; 277():64-73. PubMed ID: 29684767
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Behavior of Listeria monocytogenes in the presence or not of intentionally-added lactic acid bacteria during ripening of artisanal Minas semi-hard cheese.
    Gonzales-Barron U; Campagnollo FB; Schaffner DW; Sant'Ana AS; Cadavez VAP
    Food Microbiol; 2020 Oct; 91():103545. PubMed ID: 32539971
    [TBL] [Abstract][Full Text] [Related]  

  • 29. An evaluation of Lux technology as an alternative methodology to determine growth rates of Listeria in laboratory media and complex food matrices.
    Nyhan L; Begley M; Johnson N; Callanan M
    Int J Food Microbiol; 2020 Mar; 317():108442. PubMed ID: 31759181
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Heat Inactivation of Listeria monocytogenes on Pecans, Macadamia Nuts, and Sunflower Seeds.
    Den Bakker M; den Bakker HC; Diez-Gonzalez F
    Microbiol Spectr; 2021 Oct; 9(2):e0113421. PubMed ID: 34643447
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Prediction of population behavior of Listeria monocytogenes in food using machine learning and a microbial growth and survival database.
    Hiura S; Koseki S; Koyama K
    Sci Rep; 2021 May; 11(1):10613. PubMed ID: 34012066
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Validation of NMKL method No. 136--Listeria monocytogenes, detection and enumeration in foods and feed.
    Loncarevic S; Økland M; Sehic E; Norli HS; Johansson T
    Int J Food Microbiol; 2008 May; 124(2):154-63. PubMed ID: 18472176
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Effect of microstructure and initial cell conditions on thermal inactivation kinetics and sublethal injury of Listeria monocytogenes in fish-based food model systems.
    Verheyen D; Baka M; Akkermans S; Skåra T; Van Impe JF
    Food Microbiol; 2019 Dec; 84():103267. PubMed ID: 31421789
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Effect of food microstructure on growth dynamics of Listeria monocytogenes in fish-based model systems.
    Verheyen D; Bolívar A; Pérez-Rodríguez F; Baka M; Skåra T; Van Impe JF
    Int J Food Microbiol; 2018 Oct; 283():7-13. PubMed ID: 29933230
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Evaluation of the efficacy of antimicrobials against pathogens on food contact surfaces using a rapid microbial log reduction detection method.
    Ghoshal M; Ryu V; McLandsborough L
    Int J Food Microbiol; 2022 Jul; 373():109699. PubMed ID: 35569192
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Thermal inactivation of Salmonella, Shiga toxin-producing Escherichia coli, Listeria monocytogenes, and a surrogate (Pediococcus acidilactici) on raisins, apricot halves, and macadamia nuts using vacuum-steam pasteurization.
    Acuff JC; Wu J; Marik C; Waterman K; Gallagher D; Huang H; Williams RC; Ponder MA
    Int J Food Microbiol; 2020 Nov; 333():108814. PubMed ID: 32805576
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A novel model to assess the efficacy of steam surface pasteurization of cooked surimi gels inoculated with realistic levels of Listeria innocua.
    Skåra T; Valdramidis VP; Rosnes JT; Noriega E; Van Impe JF
    Food Microbiol; 2014 Dec; 44():64-70. PubMed ID: 25084647
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Cardinal parameter meta-regression models describing Listeria monocytogenes growth in broth.
    Nunes Silva B; Cadavez V; Teixeira JA; Ellouze M; Gonzales-Barron U
    Food Res Int; 2020 Oct; 136():109476. PubMed ID: 32846559
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The importance of what we cannot observe: Experimental limitations as a source of bias for meta-regression models in predictive microbiology.
    Garre A; Zwietering MH; den Besten HMW
    Int J Food Microbiol; 2023 Feb; 387():110045. PubMed ID: 36549087
    [TBL] [Abstract][Full Text] [Related]  

  • 40. On the use of in-silico simulations to support experimental design: A case study in microbial inactivation of foods.
    Garre A; Peñalver-Soto JL; Esnoz A; Iguaz A; Fernandez PS; Egea JA
    PLoS One; 2019; 14(8):e0220683. PubMed ID: 31454353
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.