These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
197 related articles for article (PubMed ID: 35985127)
1. Two- and three-dimensional piezoelectric scaffolds for bone tissue engineering. Silva CA; Fernandes MM; Ribeiro C; Lanceros-Mendez S Colloids Surf B Biointerfaces; 2022 Oct; 218():112708. PubMed ID: 35985127 [TBL] [Abstract][Full Text] [Related]
2. Bioinspired Three-Dimensional Magnetoactive Scaffolds for Bone Tissue Engineering. Fernandes MM; Correia DM; Ribeiro C; Castro N; Correia V; Lanceros-Mendez S ACS Appl Mater Interfaces; 2019 Dec; 11(48):45265-45275. PubMed ID: 31682095 [TBL] [Abstract][Full Text] [Related]
3. Piezoelectric materials as stimulatory biomedical materials and scaffolds for bone repair. Tandon B; Blaker JJ; Cartmell SH Acta Biomater; 2018 Jun; 73():1-20. PubMed ID: 29673838 [TBL] [Abstract][Full Text] [Related]
4. Fabrication and characterization of highly porous barium titanate based scaffold coated by Gel/HA nanocomposite with high piezoelectric coefficient for bone tissue engineering applications. Ehterami A; Kazemi M; Nazari B; Saraeian P; Azami M J Mech Behav Biomed Mater; 2018 Mar; 79():195-202. PubMed ID: 29306083 [TBL] [Abstract][Full Text] [Related]
5. Synergistic Effect of PVDF-Coated PCL-TCP Scaffolds and Pulsed Electromagnetic Field on Osteogenesis. Dong Y; Suryani L; Zhou X; Muthukumaran P; Rakshit M; Yang F; Wen F; Hassanbhai AM; Parida K; Simon DT; Iandolo D; Lee PS; Ng KW; Teoh SH Int J Mol Sci; 2021 Jun; 22(12):. PubMed ID: 34208563 [TBL] [Abstract][Full Text] [Related]
6. Patterned Piezoelectric Scaffolds for Osteogenic Differentiation. Marques-Almeida T; Cardoso VF; Gama M; Lanceros-Mendez S; Ribeiro C Int J Mol Sci; 2020 Nov; 21(21):. PubMed ID: 33171761 [TBL] [Abstract][Full Text] [Related]
7. Characterization and in vitro cytocompatibility of piezoelectric electrospun scaffolds. Weber N; Lee YS; Shanmugasundaram S; Jaffe M; Arinzeh TL Acta Biomater; 2010 Sep; 6(9):3550-6. PubMed ID: 20371302 [TBL] [Abstract][Full Text] [Related]
8. Scaffold-Based Poly(Vinylidene Fluoride) and Its Copolymers: Materials, Fabrication Methods, Applications, and Perspectives. Sun W; Gao C; Liu H; Zhang Y; Guo Z; Lu C; Qiao H; Yang Z; Jin A; Chen J; Dai Q; Liu Y ACS Biomater Sci Eng; 2024 May; 10(5):2805-2826. PubMed ID: 38621173 [TBL] [Abstract][Full Text] [Related]
9. Piezoelectric 3-D Fibrous Poly(3-hydroxybutyrate)-Based Scaffolds Ultrasound-Mineralized with Calcium Carbonate for Bone Tissue Engineering: Inorganic Phase Formation, Osteoblast Cell Adhesion, and Proliferation. Chernozem RV; Surmeneva MA; Shkarina SN; Loza K; Epple M; Ulbricht M; Cecilia A; Krause B; Baumbach T; Abalymov AA; Parakhonskiy BV; Skirtach AG; Surmenev RA ACS Appl Mater Interfaces; 2019 May; 11(21):19522-19533. PubMed ID: 31058486 [TBL] [Abstract][Full Text] [Related]
11. Highly porous scaffolds of PEDOT:PSS for bone tissue engineering. Guex AG; Puetzer JL; Armgarth A; Littmann E; Stavrinidou E; Giannelis EP; Malliaras GG; Stevens MM Acta Biomater; 2017 Oct; 62():91-101. PubMed ID: 28865991 [TBL] [Abstract][Full Text] [Related]
12. Supercritical CO Li S; Song C; Yang S; Yu W; Zhang W; Zhang G; Xi Z; Lu E Acta Biomater; 2019 Aug; 94():253-267. PubMed ID: 31154054 [TBL] [Abstract][Full Text] [Related]
13. Comparative review of piezoelectric biomaterials approach for bone tissue engineering. Samadi A; Salati MA; Safari A; Jouyandeh M; Barani M; Singh Chauhan NP; Golab EG; Zarrintaj P; Kar S; Seidi F; Hejna A; Saeb MR J Biomater Sci Polym Ed; 2022 Aug; 33(12):1555-1594. PubMed ID: 35604896 [TBL] [Abstract][Full Text] [Related]
14. Biomimetic mineralization of novel hydroxyethyl cellulose/soy protein isolate scaffolds promote bone regeneration in vitro and in vivo. Wu M; Wu P; Xiao L; Zhao Y; Yan F; Liu X; Xie Y; Zhang C; Chen Y; Cai L Int J Biol Macromol; 2020 Nov; 162():1627-1641. PubMed ID: 32781127 [TBL] [Abstract][Full Text] [Related]
15. Preparation of dexamethasone-loaded biphasic calcium phosphate nanoparticles/collagen porous composite scaffolds for bone tissue engineering. Chen Y; Kawazoe N; Chen G Acta Biomater; 2018 Feb; 67():341-353. PubMed ID: 29242161 [TBL] [Abstract][Full Text] [Related]
16. Highly porous PHB-based bioactive scaffolds for bone tissue engineering by in situ synthesis of hydroxyapatite. Degli Esposti M; Chiellini F; Bondioli F; Morselli D; Fabbri P Mater Sci Eng C Mater Biol Appl; 2019 Jul; 100():286-296. PubMed ID: 30948063 [TBL] [Abstract][Full Text] [Related]
17. Three-Dimensional Printing of Hollow-Struts-Packed Bioceramic Scaffolds for Bone Regeneration. Luo Y; Zhai D; Huan Z; Zhu H; Xia L; Chang J; Wu C ACS Appl Mater Interfaces; 2015 Nov; 7(43):24377-83. PubMed ID: 26479454 [TBL] [Abstract][Full Text] [Related]
18. Mimicking the electrophysiological microenvironment of bone tissue using electroactive materials to promote its regeneration. Zheng T; Huang Y; Zhang X; Cai Q; Deng X; Yang X J Mater Chem B; 2020 Dec; 8(45):10221-10256. PubMed ID: 33084727 [TBL] [Abstract][Full Text] [Related]
19. Comparison of osteogenic differentiation potential of induced pluripotent stem cells on 2D and 3D polyvinylidene fluoride scaffolds. Mirzaei A; Moghadam AS; Abazari MF; Nejati F; Torabinejad S; Kaabi M; Enderami SE; Ardeshirylajimi A; Darvish M; Soleimanifar F; Saburi E J Cell Physiol; 2019 Aug; 234(10):17854-17862. PubMed ID: 30851069 [TBL] [Abstract][Full Text] [Related]
20. Development and Characterization of Organic Electronic Scaffolds for Bone Tissue Engineering. Iandolo D; Ravichandran A; Liu X; Wen F; Chan JK; Berggren M; Teoh SH; Simon DT Adv Healthc Mater; 2016 Jun; 5(12):1505-12. PubMed ID: 27111453 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]