These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
222 related articles for article (PubMed ID: 35985223)
21. High Precision Dimensional Measurement with Convolutional Neural Network and Bi-Directional Long Short-Term Memory (LSTM). Wang Y; Chen Q; Ding M; Li J Sensors (Basel); 2019 Dec; 19(23):. PubMed ID: 31810201 [TBL] [Abstract][Full Text] [Related]
22. Learning to Monitor Machine Health with Convolutional Bi-Directional LSTM Networks. Zhao R; Yan R; Wang J; Mao K Sensors (Basel); 2017 Jan; 17(2):. PubMed ID: 28146106 [TBL] [Abstract][Full Text] [Related]
23. Detection of sweet corn seed viability based on hyperspectral imaging combined with firefly algorithm optimized deep learning. Wang Y; Song S Front Plant Sci; 2024; 15():1361309. PubMed ID: 38751847 [TBL] [Abstract][Full Text] [Related]
24. Using discrete wavelet transform for optimizing COVID-19 new cases and deaths prediction worldwide with deep neural networks. Sperandio Nascimento EG; Ortiz J; Furtado AN; Frias D PLoS One; 2023; 18(4):e0282621. PubMed ID: 37023075 [TBL] [Abstract][Full Text] [Related]
25. Character gated recurrent neural networks for Arabic sentiment analysis. Omara E; Mousa M; Ismail N Sci Rep; 2022 Jun; 12(1):9779. PubMed ID: 35697814 [TBL] [Abstract][Full Text] [Related]
26. Hybrid CNN-LSTM for Predicting Diabetes: A Review. Soltanizadeh S; Naghibi SS Curr Diabetes Rev; 2024; 20(7):e201023222410. PubMed ID: 37867273 [TBL] [Abstract][Full Text] [Related]
27. Characterizing autism spectrum disorder by deep learning spontaneous brain activity from functional near-infrared spectroscopy. Xu L; Liu Y; Yu J; Li X; Yu X; Cheng H; Li J J Neurosci Methods; 2020 Feb; 331():108538. PubMed ID: 31794776 [TBL] [Abstract][Full Text] [Related]
28. An Investigation of Deep Learning Models for EEG-Based Emotion Recognition. Zhang Y; Chen J; Tan JH; Chen Y; Chen Y; Li D; Yang L; Su J; Huang X; Che W Front Neurosci; 2020; 14():622759. PubMed ID: 33424547 [TBL] [Abstract][Full Text] [Related]
29. Deep Learning-Based Human Activity Real-Time Recognition for Pedestrian Navigation. Ye J; Li X; Zhang X; Zhang Q; Chen W Sensors (Basel); 2020 Apr; 20(9):. PubMed ID: 32366055 [TBL] [Abstract][Full Text] [Related]
30. Forecasting the Status of Municipal Waste in Smart Bins Using Deep Learning. Ahmed S; Mubarak S; Du JT; Wibowo S Int J Environ Res Public Health; 2022 Dec; 19(24):. PubMed ID: 36554676 [TBL] [Abstract][Full Text] [Related]
31. Using a Convolutional Neural Network and Convolutional Long Short-term Memory to Automatically Detect Aneurysms on 2D Digital Subtraction Angiography Images: Framework Development and Validation. Liao J; Liu L; Duan H; Huang Y; Zhou L; Chen L; Wang C JMIR Med Inform; 2022 Mar; 10(3):e28880. PubMed ID: 35294371 [TBL] [Abstract][Full Text] [Related]
32. Discrimination of Tetrastigma hemsleyanum according to geographical origin by near-infrared spectroscopy combined with a deep learning approach. Zhou D; Yu Y; Hu R; Li Z Spectrochim Acta A Mol Biomol Spectrosc; 2020 Sep; 238():118380. PubMed ID: 32388414 [TBL] [Abstract][Full Text] [Related]
33. Prediction and Diagnosis of Respiratory Disease by Combining Convolutional Neural Network and Bi-directional Long Short-Term Memory Methods. Li L; Ayiguli A; Luan Q; Yang B; Subinuer Y; Gong H; Zulipikaer A; Xu J; Zhong X; Ren J; Zou X Front Public Health; 2022; 10():881234. PubMed ID: 35602136 [TBL] [Abstract][Full Text] [Related]
34. A Lightweight convolutional neural network for nicotine prediction in tobacco by near-infrared spectroscopy. Wang D; Zhao F; Wang R; Guo J; Zhang C; Liu H; Wang Y; Zong G; Zhao L; Feng W Front Plant Sci; 2023; 14():1138693. PubMed ID: 37251760 [TBL] [Abstract][Full Text] [Related]
35. Probing 1D convolutional neural network adapted to near-infrared spectroscopy for efficient classification of mixed fish. Chen X; Cheng G; Liu S; Meng S; Jiao Y; Zhang W; Liang J; Zhang W; Wang B; Xu X; Xu J Spectrochim Acta A Mol Biomol Spectrosc; 2022 Oct; 279():121350. PubMed ID: 35609391 [TBL] [Abstract][Full Text] [Related]
36. Efficient state of charge estimation of lithium-ion batteries in electric vehicles using evolutionary intelligence-assisted GLA-CNN-Bi-LSTM deep learning model. Khan MK; Houran MA; Kauhaniemi K; Zafar MH; Mansoor M; Rashid S Heliyon; 2024 Aug; 10(15):e35183. PubMed ID: 39170306 [TBL] [Abstract][Full Text] [Related]
37. Design and Evaluation of Deep Learning Models for Continuous Acute Pain Detection Based on Phasic Electrodermal Activity. Pinzon-Arenas JO; Kong Y; Chon KH; Posada-Quintero HF IEEE J Biomed Health Inform; 2023 Sep; 27(9):4250-4260. PubMed ID: 37399159 [TBL] [Abstract][Full Text] [Related]
38. Passive Sensor Data Based Future Mood, Health, and Stress Prediction: User Adaptation Using Deep Learning. Yu H; Sano A Annu Int Conf IEEE Eng Med Biol Soc; 2020 Jul; 2020():5884-5887. PubMed ID: 33019313 [TBL] [Abstract][Full Text] [Related]
39. Gaze Tracking Based on Concatenating Spatial-Temporal Features. Hwang BJ; Chen HH; Hsieh CH; Huang DY Sensors (Basel); 2022 Jan; 22(2):. PubMed ID: 35062502 [TBL] [Abstract][Full Text] [Related]
40. Extracting comprehensive clinical information for breast cancer using deep learning methods. Zhang X; Zhang Y; Zhang Q; Ren Y; Qiu T; Ma J; Sun Q Int J Med Inform; 2019 Dec; 132():103985. PubMed ID: 31627032 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]